Solveeit Logo

Question

Question: On the ellipse 4x<sup>2</sup> + 9y<sup>2</sup> = 1, the points at which the tangents are parallel to...

On the ellipse 4x2 + 9y2 = 1, the points at which the tangents are parallel to the line 8x = 9y are

A

(25,15)\left( \frac{2}{5},\frac{1}{5} \right)

B

(25,15)\left( - \frac{2}{5},\frac{1}{5} \right)

C

(25,15)\left( - \frac{2}{5}, - \frac{1}{5} \right)

D

(25,15)\left( \frac{2}{5}, - \frac{1}{5} \right)

Answer

(25,15)\left( - \frac{2}{5},\frac{1}{5} \right)

Explanation

Solution

Ellipse is x214+y219\frac{x^{2}}{\frac{1}{4}} + \frac{y^{2}}{\frac{1}{9}} = 1 ⇒ a2 = 14\frac{1}{4}, b2 = 19\frac{1}{9}

The equation of its tangent is 4xx' + 9yy' = 1

∴ m = - 4x9y=89\frac{4x'}{9y'} = \frac{8}{9}∴ x' = - 2y'

and 4x'2 + 9y'2 = 1 ⇒ 4x'2 + 9x24\frac{x'^{2}}{4} = 1 ⇒ x' = ± 25\frac{2}{5}

When x' = 25\frac{2}{5}, y' = - 15\frac{1}{5} and when x' = -25\frac{2}{5}, y' = 15\frac{1}{5}

Hence points are (25,15)\left( \frac{2}{5}, - \frac{1}{5} \right) and (25,15)\left( - \frac{2}{5},\frac{1}{5} \right).