Solveeit Logo

Question

Question: On a temperature scale '$\mathbf{X}$'. The boiling point of water is $65^{\circ}\mathbf{X}$ and the ...

On a temperature scale 'X\mathbf{X}'. The boiling point of water is 65X65^{\circ}\mathbf{X} and the freczing point is 15X-15^{\circ}\mathbf{X}.

Assume that the X\mathbf{X} scale is linear. The equivalent temperature corresponding to 95X-95^{\circ}\mathbf{X} on the Farenheit scale would be:

A

63-63^{\circ}F

B

112-112^{\circ}F

C

48-48^{\circ}F

D

148-148^{\circ}F

Answer

The equivalent temperature on the Fahrenheit scale is 148F-148^{\circ}\text{F}.

Explanation

Solution

The relationship between two linear temperature scales is given by the formula:

T1FP1BP1FP1=T2FP2BP2FP2\frac{T_1 - FP_1}{BP_1 - FP_1} = \frac{T_2 - FP_2}{BP_2 - FP_2}

where TT is the temperature, FPFP is the freezing point, and BPBP is the boiling point of water on the respective scales (Scale 1 and Scale 2).

Let Scale 1 be the X scale and Scale 2 be the Fahrenheit scale.

Given: Freezing point on X scale (FPXFP_X) = 15X-15^{\circ}\text{X} Boiling point on X scale (BPXBP_X) = 65X65^{\circ}\text{X} Freezing point on Fahrenheit scale (FPFFP_F) = 32F32^{\circ}\text{F} Boiling point on Fahrenheit scale (BPFBP_F) = 212F212^{\circ}\text{F} Given temperature on X scale (TXT_X) = 95X-95^{\circ}\text{X}

We need to find the equivalent temperature on the Fahrenheit scale (TFT_F). Using the formula: TXFPXBPXFPX=TFFPFBPFFPF\frac{T_X - FP_X}{BP_X - FP_X} = \frac{T_F - FP_F}{BP_F - FP_F} Substitute the given values: 95(15)65(15)=TF3221232\frac{-95 - (-15)}{65 - (-15)} = \frac{T_F - 32}{212 - 32} 95+1565+15=TF32180\frac{-95 + 15}{65 + 15} = \frac{T_F - 32}{180} 8080=TF32180\frac{-80}{80} = \frac{T_F - 32}{180} 1=TF32180-1 = \frac{T_F - 32}{180} Multiply both sides by 180: 1×180=TF32-1 \times 180 = T_F - 32 180=TF32-180 = T_F - 32 TF=180+32T_F = -180 + 32 TF=148T_F = -148

Thus, the equivalent temperature corresponding to 95X-95^{\circ}\text{X} on the Fahrenheit scale is 148F-148^{\circ}\text{F}.