Solveeit Logo

Question

Quantitative Aptitude Question on Circles, Chords and Tangents

On a rectangular metal sheet of area 135 sq in, a circle is painted such that the circle touches two opposite sides. If the area of the sheet left unpainted is two-thirds of the painted area then the perimeter of the rectangle in inches is

A

5π(3+9π)5\sqrtπ\bigg(\frac{3+9}{π}\bigg)

B

3π(52+6π)3\sqrtπ\bigg(\frac{5}{2}+\frac{6}{π}\bigg)

C

3π(5+12π)3\sqrtπ\bigg(\frac{5+12}{π}\bigg)

D

4π(3+9π)4\sqrtπ\bigg(\frac{3+9}{\sqrt π}\bigg)

Answer

3π(52+6π)3\sqrtπ\bigg(\frac{5}{2}+\frac{6}{π}\bigg)

Explanation

Solution

The correct option is (B): 3π(52+6π)3\sqrtπ\bigg(\frac{5}{2}+\frac{6}{π}\bigg)

Let the length and the breadth of the rectangle be l and b respectively.

As the circle touches the two opposite sides, its diameter will be same as the breadth of the rectangle.

Given, lb = 135135 and lb = π(b/2)2=23×π(b/2)2π(b/2)^2 = \frac{2}{3}×π(b/2)^2

53π(b24)=135b=18π⇒ \frac{5}{3}π\bigg(\frac{b^2}{4}\bigg) = 135 ⇒ b = \frac{18}{\sqrtπ}

From this l = 15π2\frac{15\sqrtπ}{2}

∴ Required perimeter:

2(l+b)=2[15π2+18π]=3π[52+6π]2(l+b)=2\bigg[\frac{15\sqrtπ}{2}+\frac{18}{\sqrtπ}\bigg]=3\sqrtπ\bigg[\frac{5}{2}+\frac{6}{π}\bigg]