Solveeit Logo

Question

Question: On a rainy day, a raindrop falls from very high clouds and faces retardation due to air. This retard...

On a rainy day, a raindrop falls from very high clouds and faces retardation due to air. This retardation is directly proportional to the instantaneous speed of the drop. An expression for the distance traveled by the drop in time is

A

s=gα2(eαt1)+gαts = \frac{g}{\alpha^{2}}\left( e^{- \alpha t} - 1 \right) + \frac{g}{\alpha}t

B

s = gtα\frac{gt}{\alpha}

C

s=gα2(eαt1)s = \frac{g}{\alpha^{2}}\left( e^{- \alpha t} - 1 \right)

D

s=gtα2+gα(eαt1)s = \frac{gt}{\alpha^{2}} + \frac{g}{\alpha}\left( e^{- \alpha t} - 1 \right)

Answer

s=gα2(eαt1)+gαts = \frac{g}{\alpha^{2}}\left( e^{- \alpha t} - 1 \right) + \frac{g}{\alpha}t

Explanation

Solution

Let the retardation produced by instantaneous opposition

= αv (where α is a constant)

Net instantaneous acceleration = g - αv

i.e., dv/dt = (g - αv)

Integrating, 0vdv(gαv)=0tdt\int_{0}^{v}\frac{dv}{(g - \alpha v)} = \int_{0}^{t}{dt}

In gαvgαti.e.,gαvg=eαt\frac{g - \alpha v}{g} - \alpha ti.e.,\frac{g - \alpha v}{g} = e^{- \alpha t}

i.e., v = gα\frac{g}{\alpha} (1 – e-αt)

i.e., dSdt=gα(1eαt)\frac{dS}{dt} = \frac{g}{\alpha}\left( 1 - e^{- \alpha t} \right)

i.e., dS = gα(1eαt)\frac{g}{\alpha}\left( 1 - e^{- \alpha t} \right)dt

Integrating, 0sdS=gα0t(1eαt)dt\int_{0}^{s}{dS} = \frac{g}{\alpha}\int_{0}^{t}{\left( 1 - e^{- \alpha t} \right)dt}

= gα0tdtgα0teαtdt\frac{g}{\alpha}\int_{0}^{t}{dt} - \frac{g}{\alpha}\int_{0}^{t}{e^{- \alpha t}dt}

or S = gαt+gα2eαtgα2\frac{g}{\alpha}t + \frac{g}{\alpha^{2}}e^{- \alpha t} - \frac{g}{\alpha^{2}}

or S = gα2\frac{g}{\alpha^{2}} (e-αt – 1 ) + gα\frac{g}{\alpha}t