Question
Question: On a quiet day, when a whistle crosses you then its pitch decreases in the ratio \(⅘\). If the tempe...
On a quiet day, when a whistle crosses you then its pitch decreases in the ratio ⅘. If the temperature on that day is 200C, then the speed of whistle will be ____ (given the velocity of sound at 00=332m/s)
A. 48.2 m/s
B. 68.2 m/s
C. 38.2 m/s
D. 108.2 m/s
Solution
To answer this question, we first need to understand what is pitch. A frequency's sensation is generally referred to as a sound's pitch. A high frequency sound wave corresponds to a high pitch sound, whereas a low frequency sound wave corresponds to a low pitch sound.
Complete step by step answer:
As we discussed above the frequency of a sound is directly proportional to its pitch, and the frequency of a sound is directly proportional to its velocity. Relation between temperature and velocity of sound in air is,
V0VT=T0T
(Here VT is the velocity of air at temp T(in kelvin) and V0 is the velocity of air at temperature T0(in kelvin))
As given in the question V0= 332 m/s and T= 200C and T0= 00C.
Converting temperatures in kelvin
T= 20 + 273 = 293K
⇒T0= 0 + 273 =273K
Substituting the given values
332VT=273293
⇒332VT=1.035
Therefore VT=343.62m/s.
Doppler effect: The Doppler Effect is the shift in wave frequency that occurs as a wave source moves relative to its observer. When a sound source approaches you, for example, the frequency of the sound waves changes, resulting in a higher pitch. Applying Doppler effect when whistle is approaching observer
f0fa=VT−VWVT
When whistle is distancing from observer,
f0fd=VT+VWVT
Dividing these equations, we get,
fafd=VT+VWVT−VW
As given in the question fafd=54
54=VT+VWVT−VW and by equating further we get
⇒VW=9VT
∴VW=38.2m/s.........(By substituting value of VT=343.62m/s)
Hence, the correct answer is option C.
Note: Molecules with more energy can vibrate faster at higher temperatures. Sound waves can fly faster because molecules vibrate faster. In room temperature air, sound travels at 346 metres per second.