Solveeit Logo

Question

Physics Question on Moment Of Inertia

On a massless rod four masses are fixed as shown in figure. What is the moment of inertia about an axis passing through centre of rod

A

l22(M+m4)\frac{{{l}^{2}}}{2}\left( M+\frac{m}{4} \right)

B

l22(M4+m)\frac{{{l}^{2}}}{2}\left( \frac{M}{4}+m \right)

C

l24[M+m4]\frac{{{l}^{2}}}{4}\left[ M+\frac{m}{4} \right]

D

l24[M4+m]\frac{{{l}^{2}}}{4}\left[ \frac{M}{4}+m \right]

Answer

l22(M+m4)\frac{{{l}^{2}}}{2}\left( M+\frac{m}{4} \right)

Explanation

Solution

Moment of inertia of mass M about axis
=M×(l2)2=M\times {{\left( \frac{l}{2} \right)}^{2}}
Moment of inertia of both the masses having mass
M=2M×(l2)2=Ml22M=2M\times {{\left( \frac{l}{2} \right)}^{2}}=\frac{M{{l}^{2}}}{2}
Moment of inertia of masses having mass
m=2×m(l4)2=ml28m=2\times m{{\left( \frac{l}{4} \right)}^{2}}=\frac{m{{l}^{2}}}{8}
Therefore, total moment of inertia
=Ml22+ml28=\frac{M{{l}^{2}}}{2}+\frac{m{{l}^{2}}}{8}
=l22[M+m4]=\frac{{{l}^{2}}}{2}\left[ M+\frac{m}{4} \right]