Solveeit Logo

Question

Question: On a distant planet whose gravitational acceleration is 10 ms⁻² a point mass is projected with a vel...

On a distant planet whose gravitational acceleration is 10 ms⁻² a point mass is projected with a velocity of 1 ms⁻¹ with an angle 0.25π rad with the horizontal. The length 'L' of parabolic arc traced by the projectile is computed as

A

L = 10⁻¹(21\sqrt{2}^{-1} + 2⁻¹ ln(1 + 2\sqrt{2})) m

B

L = 10⁻¹(21\sqrt{2}^{-1} + 2⁻¹ ln(1 + 5\sqrt{5})) m

C

L = 10⁻¹(2\sqrt{2} + 2⁻¹ ln(1 + 3\sqrt{3})) m

D

L = 10⁻¹(2\sqrt{2} + 2⁻¹ ln(1 + 2\sqrt{2})) m

Answer

L = 10⁻¹(21\sqrt{2}^{-1} + 2⁻¹ ln(1 + 2\sqrt{2})) m

Explanation

Solution

The length of the parabolic arc traced by the projectile is calculated using the trajectory equation and arc length formula, resulting in L=101(21+21ln(1+2))mL = 10^{-1}(\sqrt{2}^{-1} + 2^{-1} \ln(1 + \sqrt{2})) \, \text{m}.

The detailed solution involves:

  1. Trajectory Equation: y=xtanθgx22v02cos2θy = x \tan\theta - \frac{gx^2}{2v_0^2 \cos^2\theta}
  2. Given Values: v0=1ms1v_0 = 1 \, \text{ms}^{-1}, g=10ms2g = 10 \, \text{ms}^{-2}, θ=π4\theta = \frac{\pi}{4}
  3. Simplified Trajectory: y=x10x2y = x - 10x^2
  4. Range: R=110R = \frac{1}{10}
  5. Arc Length Formula: L=0R1+(dydx)2dxL = \int_0^R \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx
  6. Derivative: dydx=120x\frac{dy}{dx} = 1 - 20x
  7. Integral: L=01/101+(120x)2dxL = \int_0^{1/10} \sqrt{1 + (1 - 20x)^2} dx
  8. Substitution: u=120xu = 1 - 20x, du=20dxdu = -20 dx
  9. Transformed Integral: L=120111+u2duL = \frac{1}{20} \int_{-1}^1 \sqrt{1 + u^2} du
  10. Standard Integral: 1+u2du=u21+u2+12lnu+1+u2+C\int \sqrt{1 + u^2} du = \frac{u}{2}\sqrt{1+u^2} + \frac{1}{2}\ln|u + \sqrt{1+u^2}| + C
  11. Definite Integral Evaluation: 111+u2du=2+ln(2+1)\int_{-1}^1 \sqrt{1 + u^2} du = \sqrt{2} + \ln(\sqrt{2} + 1)
  12. Final Result: L=120(2+ln(2+1))=101(12+12ln(1+2))mL = \frac{1}{20} \left(\sqrt{2} + \ln(\sqrt{2} + 1)\right) = 10^{-1} \left(\frac{1}{\sqrt{2}} + \frac{1}{2}\ln(1 + \sqrt{2})\right) \, \text{m}