Solveeit Logo

Question

Question: On [1, e] the greatest value of \(x^{2}\log x\)...

On [1, e] the greatest value of x2logxx^{2}\log x

A

e2e^{2}

B

1elog1e\frac{1}{e}\log\frac{1}{\sqrt{e}}

C

e2logee^{2}\log\sqrt{e}

D

None

Answer

e2e^{2}

Explanation

Solution

f(x)=x2logxf(x)=(2logx+1)xf(x) = x^{2}\log x \Rightarrow f^{'}(x) = (2\log x + 1)x

Now f(x)=0f^{'}(x) = 0x=e1/2,0x = e^{- 1/2},0

\because 0<e1/2<10 < e^{- 1/2} < 1,

\because None of these critical points lies in the interval [1,e]\lbrack 1,e\rbrack

\therefore So we only compare the value of f(x)f(x) at the end points 1 and e. We have f(1)=0,f(e)=e2f(1) = 0,f(e) = e^{2}

\therefore greatest value = e2e^{2}