Question
Question: On [1, e] the greatest value of \(x^{2}\log x\)...
On [1, e] the greatest value of x2logx
A
e2
B
e1loge1
C
e2loge
D
None
Answer
e2
Explanation
Solution
f(x)=x2logx⇒f′(x)=(2logx+1)x
Now f′(x)=0 ⇒ x=e−1/2,0
∵ 0<e−1/2<1,
∵ None of these critical points lies in the interval [1,e]
∴ So we only compare the value of f(x) at the end points 1 and e. We have f(1)=0,f(e)=e2
∴ greatest value = e2