Solveeit Logo

Question

Question: Of the given functions which of the following is not periodic \(\begin{aligned} & a)\left| \si...

Of the given functions which of the following is not periodic
a)sin3x+sin2x b)cosx+cos2x c)cos4x+tan2x d)cos2x+sinx \begin{aligned} & a)\left| \sin 3x \right|+{{\sin }^{2}}x \\\ & b)\cos \sqrt{x}+{{\cos }^{2}}x \\\ & c)\cos 4x+{{\tan }^{2}}x \\\ & d)\cos 2x+\sin x \\\ \end{aligned}

Explanation

Solution

Now we know that a function f(x)+g(x)f(x)+g(x) is periodic if f(x)f(x) and g(x)g(x) are both periodic. Also we know that trigonometric functions are periodic and also squares of trigonometric functions are periodic. With these results we will check each option.

Complete step-by-step answer:
Now first let us understand what periodic functions are. Periodic functions are nothing but the functions which repeat the same values after a time period T.
Hence if f(x)f\left( x \right) is periodic then we have f(x+T)=f(x)f\left( x+T \right)=f\left( x \right) and T is called period of function
Now we know that all trigonometric functions are periodic.
Now first let us consider option a)sin3x+sin2xa)\left| \sin 3x \right|+{{\sin }^{2}}x
Now let us check if the function sin3x+sin2x\left| \sin 3x \right|+{{\sin }^{2}}x.
Now we know that a function f(x)+g(x)f(x)+g(x) is periodic if f(x)f(x) and g(x)g(x) are both periodic.
For this function to be periodic sin3x\left| \sin 3x \right| and sin2x{{\sin }^{2}}x should both be periodic.
Now we know that modulus of sine and cosine functions are periodic.
And sinnx,cosnx,tann,cotn,secnx,cosecnx{{\sin }^{n}}x,{{\cos }^{n}}x,{{\tan }^{n}},{{\cot }^{n}},{{\sec }^{n}}x,\cos e{{c}^{n}}x are also periodic function.
Hence we have sin3x\left| \sin 3x \right| and sin2x{{\sin }^{2}}x both as periodic functions.
Hence sin3x+sin2x\left| \sin 3x \right|+{{\sin }^{2}}x is a periodic function.
Now first let us consider option b)cosx+cos2xb)\cos \sqrt{x}+{{\cos }^{2}}x
Now let us check if the function cosx+cos2x\cos \sqrt{x}+{{\cos }^{2}}x.
Now we know that a function f(x)+g(x)f(x)+g(x) is periodic if f(x)f(x) and g(x)g(x) are both periodic.
For this function to be periodic cosx\cos \sqrt{x} and cos2x{{\cos }^{2}}x should both be periodic.
And sinnx,cosnx,tann,cotn,secnx,cosecnx{{\sin }^{n}}x,{{\cos }^{n}}x,{{\tan }^{n}},{{\cot }^{n}},{{\sec }^{n}}x,\cos e{{c}^{n}}x are also periodic function.
Hence cos2x{{\cos }^{2}}x is a periodic function.
Consider cosx\cos \sqrt{x} also to be periodic, then we know that
cos(x+T)=cosx\cos \left( \sqrt{x+T} \right)=\cos \sqrt{x}
Now at x = 0 we get
cosT=cos0 cosT=1 T=2n1π,n1Z..............(1) \begin{aligned} & \cos \sqrt{T}=\cos 0 \\\ & \Rightarrow \cos \sqrt{T}=1 \\\ & \Rightarrow \sqrt{T}=2{{n}_{1}}\pi ,{{n}_{1}}\in Z..............(1) \\\ \end{aligned}
And if we put x = T we get,
cosT+T=cosT cos2T=cosT \begin{aligned} & \cos \sqrt{T+T}=\cos \sqrt{T} \\\ & \cos \sqrt{2T}=\cos \sqrt{T} \\\ \end{aligned}
But we got the value of cosT=1\cos \sqrt{T}=1
Hence using this we get
cos2T=1 2T=2n2π,n2Z.................(2) \begin{aligned} & \cos \sqrt{2T}=1 \\\ & \Rightarrow \sqrt{2T}=2{{n}_{2}}\pi ,{{n}_{2}}\in Z.................(2) \\\ \end{aligned}
Hence dividing (2) from (1) we get
2TT=2n2π2n1π 2=n2n1 \begin{aligned} & \dfrac{\sqrt{2T}}{\sqrt{T}}=\dfrac{2{{n}_{2}}\pi }{2{{n}_{1}}\pi } \\\ & \sqrt{2}=\dfrac{{{n}_{2}}}{{{n}_{1}}} \\\ \end{aligned}
But this is a contradiction since we have n1,n2{{n}_{1}},{{n}_{2}} as integers an 2\sqrt{2} is irrational and we know that irrational numbers cannot be represented in the form of pq\dfrac{p}{q} where p and q are integers.
Hence cosx\cos \sqrt{x} is not a periodic function
Hence cosx+cos2x\cos \sqrt{x}+{{\cos }^{2}}x is not a periodic function.
Now first let us consider option c)cos4x+tan2xc)\cos 4x+{{\tan }^{2}}x
Now let us check if the function cos4x+tan2x\cos 4x+{{\tan }^{2}}x.
Now we know that a function f(x)+g(x)f(x)+g(x) is periodic if f(x)f(x) and g(x)g(x) are both periodic.
For this function to be periodic cos4x\cos 4x and tan2x{{\tan }^{2}}x should both be periodic.
Now we know that the functions sinax,cosax\sin ax,\cos ax are periodic functions.
And sinnx,cosnx,tann,cotn,secnx,cosecnx{{\sin }^{n}}x,{{\cos }^{n}}x,{{\tan }^{n}},{{\cot }^{n}},{{\sec }^{n}}x,\cos e{{c}^{n}}x are also periodic function.
Hence tan2x{{\tan }^{2}}x is periodic function and cos4x\cos 4x is also a periodic function.
Hence cos4x+tan2x\cos 4x+{{\tan }^{2}}x is a periodic function.
Now first let us consider option d)cos2x+sinxd)\cos 2x+\sin x
Now let us check if the function cos2x+sinx\cos 2x+\sin x.
Now we know that a function f(x)+g(x)f(x)+g(x) is periodic if f(x)f(x) and g(x)g(x) are both periodic.
For this function to be periodic cos2x\cos 2x and sinx\sin x should both be periodic.
Now we know that trigonometric functions of the form cosax\cos ax and sinx\sin x are periodic
Hence we have cos2x\cos 2x and sinx\sin x both as periodic functions.
Hence cos2x+sinx\cos 2x+\sin x is a periodic function.

So, the correct answer is “Option b”.

Note: Here note that cosx\cos x is periodic and cosx\cos \sqrt{x} is non periodic. We have cosax\cos ax to be periodic and cosnx{{\cos }^{n}}x to be periodic we don’t know if cosxn\cos {{x}^{n}} is periodic hence we will have to check it separately.