Question
Question: of $\lim_{x\to 1} \frac{(x^2-1)\sin^2(\pi x)}{x^4-2x^3+2x-1}$...
of limx→1x4−2x3+2x−1(x2−1)sin2(πx)

Answer
π2
Explanation
Solution
- The limit is of the indeterminate form 00.
- Factorize the denominator: x4−2x3+2x−1=(x2−1)(x−1)2.
- Simplify the limit expression by canceling (x2−1): limx→1(x−1)2sin2(πx).
- Substitute y=x−1. The limit becomes limy→0y2sin2(π(y+1)).
- Using sin(π+θ)=−sin(θ), this simplifies to limy→0y2sin2(πy).
- Rewrite as limy→0(ysin(πy))2.
- Apply the standard limit limz→0zsin(az)=a.
- The result is (π)2=π2.