Question
Question: Obtain the reduction formula for \[\int\limits_{0}^{\dfrac{\pi }{2}}{{{\sin }^{n}}xdx}\] for an inte...
Obtain the reduction formula for 0∫2πsinnxdx for an integer n≥2.
Explanation
Solution
Hint: Solve the integral by putting sinnx=sinn−1x.sinx and expand it using ∫uv=u∫v.dx−∫dxd(u)∫(vdx)dx
(Use the integral formula to solve the problem.)
Complete step-by-step answer:
Given, I=0∫2πsinnxdx.
Let, In=∫sinnxdx
Let us write sinnx=sinn−1x.sinxdx
⇒In=∫(sinn−1x)(sinx)dx
Let us take u=sinn−1xand v=sinx
∴In=∫uv
i.e. In=u∫v.dx−∫dxd(u)∫(v.dx)dx
∴In=sinn−1x∫sinx.dx−∫dxd(sinn−1x)∫(sinx.dx)dx
⇒We know ∫sinx.dx=−cosx+C
∫cosx.dx=sinx+C