Solveeit Logo

Question

Question: Obtain the original frequency distribution. Mid values| \(25\)| \(105\)| \(230\)| \(400\)| \(65...

Obtain the original frequency distribution.

Mid values2525105105230230400400650650900900Total
Frequency101030304040606080803030250250
Class length5050110110140140200200300300200200
Explanation

Solution

Here we have to find the original class interval in the given data.
Using the first set of mid values and class length, then we can find the first class interval.
Then we can find the second class interval we have to use only the class length data. Similarly we can find all of it.
Finally we get the required frequency distribution.

Complete step-by-step solution:
To obtain an original frequency distribution, we need the class intervals. With the given details,

Mid values2525105105230230400400650650900900Total
Frequency101030304040606080803030250250
Class length5050110110140140200200300300200200

Now we have to First class interval:
Let us consider the upper limit and lower limit be x and y,
Here we have a data for Mid-value= 2525
So we can write it as x + y2 = 25\dfrac{{{\text{x + y}}}}{{\text{2}}}{\text{ = 25}}
Taking cross multiplication we get
x + y = 25×\Rightarrow {\text{x + y = 25}} \times {\text{2 }}
Let us multiply the terms and we get
x + y = 50 ...(1)\Rightarrow {\text{x + y = 50 }}...{\text{(1)}}
Now we use the data Class length = 5050
So we can write it as, x - y = 50 ...(2){\text{x - y = 50 }}...{\text{(2)}}
Now adding (1){\text{(1)}} and (2){\text{(2)}} we get,
x + y + x - y = 50 + 50\Rightarrow {\text{x + y + x - y = 50 + 50}}
Cancel the same term and adding the RHS we get,
2x = 100\Rightarrow 2{\text{x = 100}}
Let us divide 22 on both sides we get
x = 50\Rightarrow {\text{x = 50}}
Putting the value in (2){\text{(2)}} we get
y = 0\Rightarrow {\text{y = 0}}
Hence we can conclude the first class interval is 0500 - 50
Second class interval:
Let us consider the upper limit be x{\text{x}} and lower limit is 50{\text{50}} (we found in above case)
Class interval = 110110
So we can write it as,
x - 50 = 110 \Rightarrow {\text{x - 50 = 110 }}
On adding 5050 on both sides we get
x = 110 + 50\Rightarrow {\text{x = 110 + 50}}
Let us adding we get,
x = 160\Rightarrow {\text{x = 160}}
Hence we conclude the second class interval is 160{\text{160}}.
Third class interval:
Let the upper limit be x{\text{x}}and lower limit is 160160(we found in above case)
Class length = 140140
So we can write it as,
x - 160 = 140\Rightarrow {\text{x - 160 = 140}}
On adding 160160 on both sides we get
x = 140 + 160\Rightarrow {\text{x = 140 + 160}}
Let us add the RHS we get
x = 300\Rightarrow {\text{x = 300}}
So the third class interval is 300300.
Fourth class interval:
Let the upper limit be x{\text{x}} and lower limit is 300300 (we found in above case)
Class length = 200200
x - 300 = 200\Rightarrow {\text{x - 300 = 200}}
On adding 300300 on both sides we get
x = 200 + 300\Rightarrow {\text{x = 200 + 300}}
Let us add the RHS we get
x = 500\Rightarrow {\text{x = 500}}
So the fourth class interval is 500500.
Fifth class interval:
Let the upper limit be x{\text{x}} and lower limit is 500500 (we found in above case)
Class length = 300300
x - 500 = 300\Rightarrow {\text{x - 500 = 300}}
On adding 500500 on both sides we get
x = 300 + 500\Rightarrow {\text{x = 300 + 500}}
Let us add the RHS we get
x = 800\Rightarrow {\text{x = 800}}
So the fifth class interval is 800800.
Sixth class interval:
Let the upper limit be x{\text{x}} and lower limit is 800800 (we found in above case)
Class length = 200200
x - 800 = 200\Rightarrow {\text{x - 800 = 200}}
On adding 800800 on both sides we get
x = 200 + 800\Rightarrow {\text{x = 200 + 800}}
Let us add the RHS we get
x = 1000\Rightarrow {\text{x = 1000}}
So the sixth class interval is 10001000.
Now, the original frequency distribution,

Class interval0500 - 505016050 - 160160300160 - 300300500300 - 500500800500 - 8008001000800 - 1000Total
Frequency101030304040606080803030250250

Note: In this question we have an alternative method as follows:
After finding the first class interval as did in the above solution, using mid-value we will find the other class intervals.
Let the upper limit be x{\text{x}} and lower limit is 50{\text{50}} (we already found)
Mid-value= 105105
So we can write it as,
x + 502 = 105\Rightarrow \dfrac{{{\text{x + 50}}}}{{\text{2}}}{\text{ = 105}}
Taking cross multiplication we get
x + 50 = 105×\Rightarrow {\text{x + 50 = 105}} \times {\text{2 }}
On multiplying the RHS and subtract 5050 on both sides we get
x = 210 - 50\Rightarrow {\text{x = 210 - 50}}
Let us subtract the RHS we get
x = 160\Rightarrow {\text{x = 160}}
So the second class interval is 160{\text{160}}.
Similarly we can find the entire class interval