Question
Question: Obtain the inverse Laplace transform : \[\]\(\dfrac{{2s - 1}}{{{s^3} - s}}\)...
Obtain the inverse Laplace transform : $$$$s3−s2s−1
Solution
To find the inverse Laplace form we use the following notation:
f(t) = {L^{ - 1}}\left\\{ {F(s)} \right\\}
In the following question ,F(s)=s3−s2s−1
Complete step by step answer:
f(t) = {L^{ - 1}}\left\\{ {\dfrac{{2s - 1}}{{{s^3} - s}}} \right\\}
Now,
= {L^{ - 1}}\left\\{ {\dfrac{{2s - 1}}{{{s^3} - s}}} \right\\} \\\
= {L^{ - 1}}\left\\{ {\dfrac{{2s - 1}}{{s({s^2} - 1)}}} \right\\} \\\
= {L^{ - 1}}\left\\{ {\dfrac{{2s - 1}}{{s(s - 1)(s + 1)}}} \right\\} \\\
Using partial fraction ;
sA+s−1B+s+1C=s(s−1)(s+1)2s−1 s(s−1)(s+1)A(s−1)(s+1)+Bs(s+1)+Cs(s−1)=s(s−1)(s+1)2s−1 s(s−1)(s+1)A(s2−1)+B(s2+s)+C(s2−s)==s(s−1)(s+1)2s−1
Comparing the coefficients of s2:
A+B+C=0−(i)
Comparing the coefficient of s:
B−C=2−(ii)
Comparing the coefficients of constants:
\-A=−1 A=1−(iii)
From (i) and (ii)
B=C+2 A+B+C=0 A+C+2+C=0 A+2C=−2
From (iii)
1+2c=−2 2c=−2−1 2c=−3 c=2−3
Now,
B=C+2 B=2−3+2 B=21
Hence;
= {L^{ - 1}}\left\\{ {\dfrac{1}{s} + \dfrac{1}{2}(\dfrac{1}{{s - 1}}) - \dfrac{3}{2}(\dfrac{1}{{s + 1}})} \right\\} \\\
= {L^{ - 1}}\left\\{ {\dfrac{1}{s}} \right\\} + \dfrac{1}{2}{L^{ - 1}}\left\\{ {\dfrac{1}{{s - 1}}} \right\\} - \dfrac{3}{2}{L^{ - 1}}\left\\{ {\dfrac{1}{{s + 1}}} \right\\} \\\
\\\
Since, the standard formula is {L^{ - 1}}\left\\{ {\dfrac{1}{{s - a}}} \right\\} = {e^{at}}
=e0t+21e1t−23e−1t =1+21et−23e−t
Note: Laplace transform is a mathematical tool mostly used in the engineering field to transform an equation from one form to another. It is also an integral transform that converts a function of a real variable (often time) to a function of a complex variable.