Solveeit Logo

Question

Physics Question on Nuclei

Obtain the binding energy of the nuclei 2656Fe^{56}_{26}Fe and 83209Bi ^{209} _{83} Bi in units of MeV from the following data: mm (2656Fe^{56}_{26}Fe) = 55.934939 u, mm (83209Bi ^{209} _{83} Bi) = 208.980388 u

Answer

Atomic mass of 2656Fe^{56}_{26}Fe , m1=55.934939um1 = 55.934939 u
2656Fe^{56}_{26}Fe nucleus has 26 protons and (56 − 26) = 30 neutrons
Hence, the mass defect of the nucleus, m=26×mH+30×mnm1∆m = 26 × m_H + 30 × m_n − m_1
Where,
Mass of a proton, mH=1.007825um_H = 1.007825 u
Mass of a neutron, mn=1.008665um_n = 1.008665 u
∆m = 26 × 1.007825 + 30 × 1.008665 − 55.934939
= 26.20345 + 30.25995 − 55.934939
= 0.528461 u
But 1 u = 931.5 MeVc2\frac{MeV}{c^2 }
∆m = 0.528461 × 931.5 MeVc2\frac{MeV}{c^2 }
The binding energy of this nucleus is given as:
Eb1=mc2E_{b1} = ∆mc^2
Where, c = Speed of light
Eb1E_{b1} = 0.528461 × 931.5 (MeVc2)×c2(\frac{MeV}{c^2 })\times c^2
Eb1E_{b1} = 492.26 MeV
Average binding energy per nucleon = 492.2656=8.79MeV\frac{492.26}{56} = 8.79 MeV

Atomic mass of 83209Bi ^{209} _{83} Bi, m2=208.980388um_2 = 208.980388 u
83209Bi^{209} _{83} Bi nucleus has 83 protons and (209 − 83) 126 neutrons.
Hence, the mass defect of this nucleus is given as:
m=83×mH+126×mnm2∆m' = 83 × m_H + 126 × m_n − m_2
Where,
Mass of a proton, mH=1.007825um_H = 1.007825 u
Mass of a neutron, mn=1.008665um_n = 1.008665 u
m∆m' = 83 × 1.007825 + 126 × 1.008665 − 208.980388
m=∆m' = 83.649475 + 127.091790 − 208.980388
m=1.760877u∆m' = 1.760877 u
But 1u=931.5MeVc21 u = 931.5 \frac{MeV}{c^2}
∆m' = 1.760877 × 931.5MeVc2\frac{MeV}{c^2}
Hence, the binding energy of this nucleus is given as:
Eb2=mc2E_{b2} = ∆m'c^2
Eb2E_{b2} = 1.760877 × 931.5 (MeVc2)c2(\frac{MeV}{c^2})c^2
Eb2E_{b2} = 1640.26 MeV
Average binding energy per nucleon =1640.26209=\frac{1640.26}{209} = 7.848 MeV