Solveeit Logo

Question

Question: Obtain Taylor's series expansion for \(\log \left( \cos x \right)\) about the point \(x=\dfrac{\pi }...

Obtain Taylor's series expansion for log(cosx)\log \left( \cos x \right) about the point x=π3x=\dfrac{\pi }{3} upto the fourth degree term.

Explanation

Solution

We will look at the Taylor's series expansion for a function f(x)f\left( x \right) about a point x=ax=a. Then we will find the derivative of the given function. As Taylor's series expansion has terms with higher-order derivatives, we will compute them for the given function. We will then substitute the value x=π3x=\dfrac{\pi }{3} in the derivatives obtained. We will put the obtained results in Taylor's series expansion.

Complete step-by-step solution
The Taylor's series expansion a function f(x)f\left( x \right) about a point x=ax=a is given by
f(x)=f(a)+f(a)(xa)+f(a)2!(xa)2+f(3)(a)3!(xa)3+f\left( x \right)=f\left( a \right)+{f}'\left( a \right)\left( x-a \right)+\dfrac{{f}''\left( a \right)}{2!}{{\left( x-a \right)}^{2}}+\dfrac{{{f}^{(3)}}\left( a \right)}{3!}{{\left( x-a \right)}^{3}}+\cdots
The given function is f(x)=log(cosx)f\left( x \right)=\log \left( \cos x \right). We have to find the Taylor's series expansion of the given function upto the fourth degree term. So, we will compute upto the fourth derivative of the given function.
The value of the function at x=π3x=\dfrac{\pi }{3} is f(π3)=log(cosπ3)=log(12)f\left( \dfrac{\pi }{3} \right)=\log \left( \cos \dfrac{\pi }{3} \right)=\log \left( \dfrac{1}{2} \right).
The first derivative of f(x)f\left( x \right) is f(x)=1cosx×sinx{f}'\left( x \right)=\dfrac{1}{\cos x}\times -\sin x. The value of the first derivative at x=π3x=\dfrac{\pi }{3} is f(π3)=1cosπ3×sinπ3=1(12)×32=3{f}'\left( \dfrac{\pi }{3} \right)=\dfrac{1}{\cos \dfrac{\pi }{3}}\times -\sin \dfrac{\pi }{3}=\dfrac{1}{\left( \dfrac{1}{2} \right)}\times -\dfrac{\sqrt{3}}{2}=-\sqrt{3}.
The second derivative of f(x)f\left( x \right) is f(x)=sec2x{f}''\left( x \right)=-{{\sec }^{2}}x. The value of the second derivative at x=π3x=\dfrac{\pi }{3} is f(π3)=sec2π3=1cos2π3=1(12)2=4{f}''\left( \dfrac{\pi }{3} \right)=-{{\sec }^{2}}\dfrac{\pi }{3}=-\dfrac{1}{{{\cos }^{2}}\dfrac{\pi }{3}}=-\dfrac{1}{{{\left( \dfrac{1}{2} \right)}^{2}}}=-4.
The third derivative of f(x)f\left( x \right) is f(3)(x)=2sec2xtanx{{f}^{(3)}}\left( x \right)=-2{{\sec }^{2}}x\tan x. The value of the second derivative at x=π3x=\dfrac{\pi }{3} is f(3)(π3)=2sec2π3tanπ3=2×4×3=83{{f}^{(3)}}\left( \dfrac{\pi }{3} \right)=-2{{\sec }^{2}}\dfrac{\pi }{3}\tan \dfrac{\pi }{3}=-2\times 4\times \sqrt{3}=-8\sqrt{3}.
The fourth derivative of f(x)f\left( x \right) is f(4)(x)=4sec2xtan2x+2sec4x{{f}^{(4)}}\left( x \right)=4{{\sec }^{2}}x{{\tan }^{2}}x+2{{\sec }^{4}}x. The value of the second derivative at x=π3x=\dfrac{\pi }{3} is
f(4)(π3)=4sec2π3tan2π3+2sec4π3 =4×4×32+2×1(12)2=48+2×16=48+32=80\begin{aligned} & {{f}^{(4)}}\left( \dfrac{\pi }{3} \right)=4{{\sec }^{2}}\dfrac{\pi }{3}{{\tan }^{2}}\dfrac{\pi }{3}+2{{\sec }^{4}}\dfrac{\pi }{3} \\\ & =4\times 4\times {{\sqrt{3}}^{2}}+2\times \dfrac{1}{{{\left( \dfrac{1}{2} \right)}^{2}}}=48+2\times 16=48+32=80 \end{aligned}
Now, substituting all these values in the Taylor's expansion series, we get
f(log(cosx))=log(12)+(3)(xπ3)+(4)2!(xπ3)2+(83)3!(xπ3)3+804!(xπ3)4f\left( \log \left( \cos x \right) \right)=\log \left( \dfrac{1}{2} \right)+\left( -\sqrt{3} \right)\left( x-\dfrac{\pi }{3} \right)+\dfrac{\left( -4 \right)}{2!}{{\left( x-\dfrac{\pi }{3} \right)}^{2}}+\dfrac{\left( -8\sqrt{3} \right)}{3!}{{\left( x-\dfrac{\pi }{3} \right)}^{3}}+\dfrac{80}{4!}{{\left( x-\dfrac{\pi }{3} \right)}^{4}}
Simplifying the above equation, we get
f(log(cosx))=log(12)3(xπ3)2(xπ3)2433(xπ3)3+103(xπ3)4f\left( \log \left( \cos x \right) \right)=\log \left( \dfrac{1}{2} \right)-\sqrt{3}\left( x-\dfrac{\pi }{3} \right)-2{{\left( x-\dfrac{\pi }{3} \right)}^{2}}-\dfrac{4\sqrt{3}}{3}{{\left( x-\dfrac{\pi }{3} \right)}^{3}}+\dfrac{10}{3}{{\left( x-\dfrac{\pi }{3} \right)}^{4}}
The above equation is the Taylor's series expansion up to the fourth degree term of the function f(x)=log(cosx)f\left( x \right)=\log \left( \cos x \right).

Note: In this type of question, it is necessary that we are familiar with the derivatives of standard functions. It is also important that we know the values of trigonometric functions for standard angles. This will make the calculations a little bit easier. It is useful to calculate every derivative separately so that we can avoid making errors in the calculations.