Solveeit Logo

Question

Question: Obtain reduction formula: \[\int {{{\tan }^n}xdx} \] for integer \[n \geqslant 2\] and evaluate \[\i...

Obtain reduction formula: tannxdx\int {{{\tan }^n}xdx} for integer n2n \geqslant 2 and evaluate tan6xdx\int {{{\tan }^6}xdx}

Explanation

Solution

First we will assume the given integral to be equal to I and then simplify it and use the following identity:-
tan2x=sec2x1{\tan ^2}x = {\sec ^2}x - 1
And also, the formulas for integration:-
xndx=xn+1n+1+C\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C}
sec2xdx=tanx+C\int {{{\sec }^2}xdx = \tan x + C}
And for evaluating the value of tan6xdx\int {{{\tan }^6}xdx} we will substitute the value of n as 6 in the formula obtained.

Complete step-by-step answer:
Let In=tannxdx{I_n} = \int {{{\tan }^n}xdx}
Simplifying it we get:-
In=tan2xtann2xdx{I_n} = \int {{{\tan }^2}x{{\tan }^{n - 2}}xdx}
Now we know that,
tan2x=sec2x1{\tan ^2}x = {\sec ^2}x - 1
Hence applying this identity we get:-
In=(sec2x1)tann2xdx{I_n} = \int {\left( {{{\sec }^2}x - 1} \right){{\tan }^{n - 2}}xdx}
Simplifying it further we get:-
In=sec2xtann2xdxtann2xdx{I_n} = \int {{{\sec }^2}x} {\tan ^{n - 2}}xdx - \int {{{\tan }^{n - 2}}xdx}
Now we know that,
In2=tann2xdx{I_{n - 2}} = \int {{{\tan }^{n - 2}}xdx}
Hence, substituting this value in above equation we get:-
In=sec2xtann2xdxIn2{I_n} = \int {{{\sec }^2}x} {\tan ^{n - 2}}xdx - {I_{n - 2}}
Simplifying it we get:-
In+In2=sec2xtann2xdx{I_n} + {I_{n - 2}} = \int {{{\sec }^2}x} {\tan ^{n - 2}}xdx………………………. (1)
Now let tanx=u\tan x = u
Differentiating both the sides with respect to x we get:-
ddx(tanx)=dudx\dfrac{d}{{dx}}\left( {\tan x} \right) = \dfrac{{du}}{{dx}}
We know that, ddxtanx=sec2x\dfrac{d}{{dx}}\tan x = {\sec ^2}x
Hence, substituting the value we get:-
sec2x=dudx{\sec ^2}x = \dfrac{{du}}{{dx}}
sec2xdx=du\Rightarrow {\sec ^2}xdx = du
Substituting the respective values in equation 1 we get:-
In+In2=un2du{I_n} + {I_{n - 2}} = \int {{u^{n - 2}}du}
Now we know that,
xndx=xn+1n+1+C\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C}
Hence, applying this formula we get:-
In+In2=un2+1n2+1+C{I_n} + {I_{n - 2}} = \dfrac{{{u^{n - 2 + 1}}}}{{n - 2 + 1}} + C
Simplifying it we get:-
In+In2=un1n1+C{I_n} + {I_{n - 2}} = \dfrac{{{u^{n - 1}}}}{{n - 1}} + C
Now substituting back the value of u we get:-
In+In2=tann1xn1+C{I_n} + {I_{n - 2}} = \dfrac{{{{\tan }^{n - 1}}x}}{{n - 1}} + C
Therefore, the reduction formula is:-
In=tann1xn1In2{I_n} = \dfrac{{{{\tan }^{n - 1}}x}}{{n - 1}} - {I_{n - 2}}
Now we need to evaluate the value of tan6xdx\int {{{\tan }^6}xdx}
Hence, we need to substitute the value of n as 6.
Therefore, on substituting we get:-
I6=tan61x61I62{I_6} = \dfrac{{{{\tan }^{6 - 1}}x}}{{6 - 1}} - {I_{6 - 2}}
Simplifying it we get:-
I6=tan5x5I4{I_6} = \dfrac{{{{\tan }^5}x}}{5} - {I_4}……………………….. (2)
Now we need to find the value of I4{I_4}
Therefore, putting n=4n = 4in reduction formula we get:-
I4=tan41x41I42{I_4} = \dfrac{{{{\tan }^{4 - 1}}x}}{{4 - 1}} - {I_{4 - 2}}
Simplifying it we get:-
I4=tan3x3I2{I_4} = \dfrac{{{{\tan }^3}x}}{3} - {I_2}……………………. (3)
Now we have to find the value of I2{I_2}
Therefore, putting n=2n = 2in reduction formula we get:-
I2=tan21x21I22{I_2} = \dfrac{{{{\tan }^{2 - 1}}x}}{{2 - 1}} - {I_{2 - 2}}
Simplifying it we get:-
I2=tanxI0{I_2} = \tan x - {I_0}……………………. (4)
Now we know that,
I0=tan0xdx{I_0} = \int {{{\tan }^0}x} dx
I0=1dx{I_0} = \int 1 dx
On integration we get:-
I0=x{I_0} = x
Substituting this value in equation 4 we get:-
I2=tanxx{I_2} = \tan x - x
Now substituting this value in equation 3 we get:-
I4=tan3x3(tanxx){I_4} = \dfrac{{{{\tan }^3}x}}{3} - \left( {\tan x - x} \right)
I4=tan3x3tanx+x\Rightarrow {I_4} = \dfrac{{{{\tan }^3}x}}{3} - \tan x + x
Now substituting this value in equation 2 we get:-
I6=tan5x5(tan3x3tanx+x){I_6} = \dfrac{{{{\tan }^5}x}}{5} - \left( {\dfrac{{{{\tan }^3}x}}{3} - \tan x + x} \right)
Simplifying it we get:-

I6=tan5x5tan3x3+tanxx+C{I_6} = \dfrac{{{{\tan }^5}x}}{5} - \dfrac{{{{\tan }^3}x}}{3} + \tan x - x + C.

Note: Students might forget to substitute back the value of u while finding the reduction formula.
Also, in finding values like I6{I_6} we should use the reduction formula to ease the calculations.
Students should note that, the general formula for integration is given by:-
xndx=xn+1n+1+C\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C}
Also, never forget to add a constant of integration C after integration in case of indefinite integrals.