Solveeit Logo

Question

Question: OABCD is a pyramid with square base ABCD of unit side and vertex O such that OA = OB = OC = OD = 1, ...

OABCD is a pyramid with square base ABCD of unit side and vertex O such that OA = OB = OC = OD = 1, then

A

angle between the line AC and OD is π3\frac{\pi}{3}

B

angle between the line AC and OD is π2\frac{\pi}{2}

C

shortest distance between AC and OD is 12\frac{1}{\sqrt{2}}

D

shortest distance between AC and OD is 12\frac{1}{2}

Answer

angle between the line AC and OD is π2\frac{\pi}{2}; shortest distance between AC and OD is 12\frac{1}{2}

Explanation

Solution

Solution Outline

  1. Coordinates Assignment
    Let

    A=(0,0,0),B=(1,0,0),C=(1,1,0),D=(0,1,0). A=(0,0,0),\quad B=(1,0,0),\quad C=(1,1,0),\quad D=(0,1,0).

    The center of square ABCDABCD is M=(12,12,0)M=(\tfrac12,\tfrac12,0).
    Since OA=OB=OC=OD=1OA=OB=OC=OD=1, if O=(12,12,h)O=(\tfrac12,\tfrac12,h), then

    OA2=(12)2+(12)2+h2=1    h2=12,  h=12. OA^2 = \bigl(\tfrac12\bigr)^2 + \bigl(\tfrac12\bigr)^2 + h^2 = 1 \;\Longrightarrow\; h^2 = \tfrac12,\;h=\tfrac{1}{\sqrt2}.
  2. Angle Between ACAC and ODOD
    Direction vectors:

    v=AC=(1,1,0),w=OD=(0,1,0)(12,12,12)=(12,12,12). \vec{v}=\overrightarrow{AC}=(1,1,0),\quad \vec{w}=\overrightarrow{OD}=(0,1,0)-\bigl(\tfrac12,\tfrac12,\tfrac1{\sqrt2}\bigr) =\bigl(-\tfrac12,\tfrac12,-\tfrac1{\sqrt2}\bigr).

    Dot product:

    vw=1(12)+1(12)+0(12)=0. \vec{v}\cdot\vec{w}=1\cdot(-\tfrac12)+1\cdot(\tfrac12)+0\cdot(-\tfrac1{\sqrt2})=0.

    Hence cosθ=0\cos\theta=0, so θ=π2\theta=\tfrac{\pi}{2}.

  3. Shortest Distance Between Skew Lines
    Formula:

    d=(OA)(v×w)v×w. d = \frac{\bigl|\bigl(\overrightarrow{O A}\bigr)\cdot(\vec{v}\times\vec{w})\bigr|} {\|\vec{v}\times\vec{w}\|}.

    Compute:

    OA=(12,12,12),v×w=ijk110121212=(12,  12,  1), \overrightarrow{OA}=(\tfrac12,\tfrac12,\tfrac1{\sqrt2}), \quad \vec{v}\times\vec{w} =\begin{vmatrix} \mathbf{i}&\mathbf{j}&\mathbf{k}\\ 1&1&0\\ -\tfrac12&\tfrac12&-\tfrac1{\sqrt2} \end{vmatrix} =\bigl(-\tfrac1{\sqrt2},\;\tfrac1{\sqrt2},\;1\bigr), v×w=12+12+1=2,(OA)(v×w)=12. \|\vec{v}\times\vec{w}\|=\sqrt{\tfrac12+\tfrac12+1}=\sqrt2,\quad (\overrightarrow{OA})\cdot(\vec{v}\times\vec{w})=\frac1{\sqrt2}.

    Thus

    d=122=12. d=\frac{\tfrac1{\sqrt2}}{\sqrt2}=\frac12.