Solveeit Logo

Question

Question: O is the circumcentre of the triangle ABC and R<sub>1</sub>, R<sub>2</sub>, R<sub>3</sub> are the ra...

O is the circumcentre of the triangle ABC and R1, R2, R3 are the radii of the circumcircles of the triangles OBC, OCA and OAB respectively. Then is equal to-

A

abcR\frac { \mathrm { abc } } { \mathrm { R } }

B

C

a+b+cR\frac { a + b + c } { R }

D

Answer

Explanation

Solution

We know that R =

D1 = Area of D OBC

[D2 = Area of DOCA, D3 = area of DOAB]

R1 = aRR4Δ1\frac { \mathrm { aRR } } { 4 \Delta _ { 1 } } Ž aR1\frac { \mathrm { a } } { \mathrm { R } _ { 1 } } = 4Δ1R2\frac { 4 \Delta _ { 1 } } { \mathrm { R } ^ { 2 } }

Similarly, bR2\frac { \mathrm { b } } { \mathrm { R } _ { 2 } } = , =

\ aR1\frac { \mathrm { a } } { \mathrm { R } _ { 1 } }++ = (D1 + D2 + D3)

= = =.