Solveeit Logo

Question

Question: O is the circumcentre of the triangle ABC and R<sub>1</sub>, R<sub>2</sub>, R<sub>3</sub> are the ra...

O is the circumcentre of the triangle ABC and R1, R2, R3 are the radii of the circumcircles of the triangle OBC, OCA and OAB respectively. Then aR1\frac{a}{R_{1}}+ bR2\frac{b}{R_{2}}+ cR3\frac{c}{R_{3}}is equal to-

A

abcR\frac{abc}{R}

B

abcR3\frac{abc}{R^{3}}

C

a+b+cR\frac{a + b + c}{R}

D

a2+b2+c2R2\frac{a^{2} + b^{2} + c^{2}}{R^{2}}

Answer

abcR3\frac{abc}{R^{3}}

Explanation

Solution

We know that R =. Let D1, D2 and D3 represent the

Areas of triangles OBC, OCA

and OAB respectively. Then

R1= a.R.R4Δ1\frac{a.R.R}{4\Delta_{1}}

Ž aR1\frac{a}{R_{1}}= 4Δ1R2\frac{4\Delta_{1}}{R^{2}}

Similarly, bR2\frac { \mathrm { b } } { \mathrm { R } _ { 2 } } = and cR3\frac { \mathrm { c } } { \mathrm { R } _ { 3 } }=

\ aR1\frac { \mathrm { a } } { \mathrm { R } _ { 1 } }+ + cR3\frac { \mathrm { c } } { \mathrm { R } _ { 3 } }= (D1+ D2 + D3) = =. =