Solveeit Logo

Question

Question: O is the circumcentre of the triangle ABC and R<sub>1</sub>, R<sub>2</sub>, R<sub>3</sub> are the ra...

O is the circumcentre of the triangle ABC and R1, R2, R3 are the radii of the circumcircles of the triangle OBC, OCA and OAB respectively. Then aR1\frac { \mathrm { a } } { \mathrm { R } _ { 1 } }+ cR3\frac { \mathrm { c } } { \mathrm { R } _ { 3 } }is equal to –

A

abcR\frac { \mathrm { abc } } { \mathrm { R } }

B

C

D

Answer

Explanation

Solution

We know that R = . Let D1, D2 and D3 represent the

Areas of triangles OBC, OCA

and OAB respectively. Then

R1=

̃ 4Δ1R2\frac { 4 \Delta _ { 1 } } { \mathrm { R } ^ { 2 } }

Similarly, bR2\frac { \mathrm { b } } { \mathrm { R } _ { 2 } } = 4Δ2R2\frac { 4 \Delta _ { 2 } } { \mathrm { R } ^ { 2 } } and cR3\frac { \mathrm { c } } { \mathrm { R } _ { 3 } }= 4Δ3R2\frac { 4 \Delta _ { 3 } } { \mathrm { R } ^ { 2 } }

\ aR1\frac { \mathrm { a } } { \mathrm { R } _ { 1 } }+ bR2\frac { \mathrm { b } } { \mathrm { R } _ { 2 } } + cR3\frac { \mathrm { c } } { \mathrm { R } _ { 3 } } = (D1+ D2 + D3)

= 4ΔR2\frac { 4 \Delta } { \mathrm { R } ^ { 2 } } = . abc4R\frac { \mathrm { abc } } { 4 \mathrm { R } } = abcR3\frac { a b c } { R ^ { 3 } }