Solveeit Logo

Question

Question: Consider the following Born-Haber's cycle for formation of MX3(s). $$M(s) + \frac{3}{2}X_2(g) \xrig...

Consider the following Born-Haber's cycle for formation of MX3(s).

M(s)+32X2(g)Hf=740 kJ molMX3(s)M(s) + \frac{3}{2}X_2(g) \xrightarrow{∆H_f = -740 \text{ kJ mol}} MX_3(s)

Then calculate value q1q_1, here q1q_1 is electron affinity of X(g) in kJ/mol. Given B.E. of X2=200X_2 = 200 kJ/mole The group number is (a) and period number is (b) of the element with atomic number Z = 100. Report value of (10a + b).

Answer

37

Explanation

Solution

The problem consists of two independent parts.

Part 1: Calculate the electron affinity (q1q_1) using the Born-Haber cycle.

The Born-Haber cycle is an application of Hess's Law, which states that the total enthalpy change for a reaction is the sum of the enthalpy changes for each step in the reaction.

The overall reaction for the formation of MX3(s)MX_3(s) is: M(s)+32X2(g)Hf=740 kJ molMX3(s)M(s) + \frac{3}{2}X_2(g) \xrightarrow{∆H_f = -740 \text{ kJ mol}} MX_3(s)

Let's list the enthalpy changes for each step in the cycle as provided in the diagram:

  1. Sublimation of M(s): M(s)M(g)M(s) \rightarrow M(g) Hsub=150 kJ/mol∆H_{sub} = 150 \text{ kJ/mol}

  2. Ionization of M(g) to M³⁺(g): M(g)M3+(g)+3eM(g) \rightarrow M^{3+}(g) + 3e^- Hion=350 kJ/mol∆H_{ion} = 350 \text{ kJ/mol} (This represents the sum of the first three ionization energies of M).

  3. Dissociation of X₂(g): 32X2(g)3X(g)\frac{3}{2}X_2(g) \rightarrow 3X(g) Given Bond Energy (B.E.) of X2=200 kJ/molX_2 = 200 \text{ kJ/mol}. This is the energy to break 1 mole of X2X_2 into 2 moles of XX. So, for 32\frac{3}{2} moles of X2X_2, the energy required is: Hdiss=32×B.E.(X2)=32×200 kJ/mol=300 kJ/mol∆H_{diss} = \frac{3}{2} \times \text{B.E.}(X_2) = \frac{3}{2} \times 200 \text{ kJ/mol} = 300 \text{ kJ/mol}. This value is denoted as 'p' in the diagram, so p=300 kJ/molp = 300 \text{ kJ/mol}.

  4. Electron Affinity of X(g): 3X(g)+3e3X(g)3X(g) + 3e^- \rightarrow 3X^{-}(g) The energy change for this step is 'q'. The question states that q1q_1 is the electron affinity of X(g) in kJ/mol, which means X(g)+eX(g)X(g) + e^- \rightarrow X^{-}(g). Therefore, q=3×q1q = 3 \times q_1.

  5. Lattice Energy of MX₃(s): M3+(g)+3X(g)MX3(s)M^{3+}(g) + 3X^{-}(g) \rightarrow MX_3(s) The lattice energy (UU) is given as 1000 kJ/mol-1000 \text{ kJ/mol}.

According to Hess's Law: Hf=Hsub+Hion+Hdiss+q+U∆H_f = ∆H_{sub} + ∆H_{ion} + ∆H_{diss} + q + U

Substitute the known values into the equation: 740 kJ/mol=150 kJ/mol+350 kJ/mol+300 kJ/mol+q+(1000 kJ/mol)-740 \text{ kJ/mol} = 150 \text{ kJ/mol} + 350 \text{ kJ/mol} + 300 \text{ kJ/mol} + q + (-1000 \text{ kJ/mol}) 740=150+350+300+q1000-740 = 150 + 350 + 300 + q - 1000 740=800+q1000-740 = 800 + q - 1000 740=200+q-740 = -200 + q q=740+200q = -740 + 200 q=540 kJ/molq = -540 \text{ kJ/mol}

Since q=3×q1q = 3 \times q_1: 540=3×q1-540 = 3 \times q_1 q1=5403q_1 = \frac{-540}{3} q1=180 kJ/molq_1 = -180 \text{ kJ/mol}

Part 2: Determine the group number (a) and period number (b) of the element with atomic number Z = 100.

The element with atomic number Z = 100 is Fermium (Fm). To determine its position in the periodic table, we write its electron configuration. The noble gas preceding Z=100 is Radon (Rn), with Z=86. The electron configuration of Fermium (Fm) is [Rn]5f127s2[Rn] 5f^{12} 7s^2.

  • Period Number (b): The period number is determined by the highest principal quantum number (n) of the valence shell. For Fermium, the highest principal quantum number is 7 (from 7s27s^2). So, b = 7.
  • Group Number (a): Fermium is an actinide, which is an f-block element. All f-block elements (lanthanides and actinides) are conventionally placed in Group 3 of the periodic table. So, a = 3.

Finally, we need to report the value of (10a+b)(10a + b): 10a+b=10(3)+710a + b = 10(3) + 7 10a+b=30+710a + b = 30 + 7 10a+b=3710a + b = 37

The question asks to report the value of (10a + b).

The final answer is 37\boxed{37}.

Explanation:

  1. Born-Haber Cycle Calculation: Apply Hess's Law: ΔHf=ΔHsub+IE+ΔHdiss+EA+U\Delta H_f = \Delta H_{sub} + \sum IE + \Delta H_{diss} + \sum EA + U. Substitute the given values: 740=150+350+(32×200)+3q1+(1000)-740 = 150 + 350 + (\frac{3}{2} \times 200) + 3q_1 + (-1000). Solve for q1q_1: 740=150+350+300+3q11000    740=800+3q11000    740=200+3q1    3q1=540    q1=180 kJ/mol-740 = 150 + 350 + 300 + 3q_1 - 1000 \implies -740 = 800 + 3q_1 - 1000 \implies -740 = -200 + 3q_1 \implies 3q_1 = -540 \implies q_1 = -180 \text{ kJ/mol}.
  2. Periodic Table Position: For Z=100 (Fermium, Fm), the electron configuration is [Rn]5f127s2[Rn] 5f^{12} 7s^2. The highest principal quantum number is 7, so period (b) = 7. Fermium is an actinide, an f-block element, which belongs to Group 3. So, group (a) = 3.
  3. Final Value: Calculate 10a+b=10(3)+7=30+7=3710a + b = 10(3) + 7 = 30 + 7 = 37.