Solveeit Logo

Question

Mathematics Question on Binomial theorem

Number of ways of selection of 8 letters from 24 letters of which 8 are a, 8 are b and the rest unlike, is given by

A

272^7

B

8.288.2^8

C

10.2710.2^7

D

None of these

Answer

10.2710.2^7

Explanation

Solution

The number of selection = coefficient of x8x^8 in (1+x+x2+....+x8)(1+x+x2+......+x8).(1+x)8(1 + x + x^2 + .... + x^8) (1 + x + x^2 + ...... + x^8). (1 + x)^8 = coefficient of x8x^8 in (1x9)2(1x)2(1+x)8\frac{\left(1-x^{9}\right)^{2}}{\left(1-x\right)^{2}} \left(1+x\right)^{8} = coefficient of x8in(1+x)8in(1+x8)(1x)2x^{8} in \left(1 + x\right)^{8} in \left(1 + x^{8}\right) \left(1 - x\right)^{-2} = coefficient of x8x^{8} in (8C0+8C1x+8C2x2+.....+8C8x8)\left(^{8}C_{0} + ^{8}C_{1}x + ^{8}C_{2}x^{2} + ..... + ^{8}C_{8}x^{8}\right) ?(1+2x+3x2+4x3+.....+9x8+....)? \left(1 + 2x + 3x^{2} + 4x^{3} + ..... + 9x^{8} +....\right) =9.8C0+8?8C1+7.8C2+....+1.8C8= 9. ^{8}C_{0} + 8 ? ^{8}C_{1} + 7. ^{8}C_{2} + .... + 1. ^{8}C_{8} =C0+2C1+3C2+....+9C8[Cr=8Cr]= C_{0} + 2C_{1 }+ 3C_{2 }+ .... + 9C_{8} \left[C_{r}= ^{8}C_{r}\right] Now C0x+C1x2+....+C8x9=x(1+x)8C_{0}x + C_{1}x^{2} + .... + C_{8}x^{9} = x \left(1 + x\right)^{8} Differentiating with respect to x, we get C0+2C1x+3C2x2+....9C8x8=(1+x)8+8x(1+x)7C_{0} + 2C_{1}x + 3C_{2}x^{2} + .... 9C_{8}x^{8} = \left(1 + x\right)^{8} + 8x \left(1 + x\right)^{7} Putting x=1x = 1, we get C0+2C1+3C2+.....+9C8C_{0 }+ 2C_{1} + 3C_{2} + ..... + 9C_{8} =28+8.27.=27(2+8)=10.27.= 2^{8} + 8.2^{7}. = 2^{7} \left(2 + 8\right) = 10.2^{7}.