Solveeit Logo

Question

Question: Number of values of x for which \(\frac{8^{x} + 27^{x}}{12^{x} + 18^{x}} = \frac{7}{6}\)...

Number of values of x for which 8x+27x12x+18x=76\frac{8^{x} + 27^{x}}{12^{x} + 18^{x}} = \frac{7}{6}

A

2

B

3

C

1

D

No value of x

Answer

2

Explanation

Solution

8x+27x12x+18x=76\frac{8^{x} + 27^{x}}{12^{x} + 18^{x}} = \frac{7}{6}

(8)x(12)x(1+(27/8)x)(1+(18/12)x)=76\frac{(8)^{x}}{(12)^{x}}\frac{(1 + (27/8)^{x})}{(1 + (18/12)^{x})} = \frac{7}{6}

(23)x(1+(3/2)3x1+(3/2)x)=76\left( \frac{2}{3} \right)^{x}\left( \frac{1 + (3/2)^{3x}}{1 + (3/2)^{x}} \right) = \frac{7}{6}

Let(32)x=t\left( \frac{3}{2} \right)^{x} = t

1+t3t(1+t)=76\frac{1 + t^{3}}{t(1 + t)} = \frac{7}{6} Q t + 1 ≠ 0

(1+t)(t2+1t)t(1+t)=76\frac{(1 + t)(t^{2} + 1 - t)}{t(1 + t)} = \frac{7}{6}

t2+1tt=76\frac{t^{2} + 1 - t}{t} = \frac{7}{6}

⇒ t = 23\frac{2}{3} or 32\frac{3}{2}