Solveeit Logo

Question

Question: number of values of x belons to [0,pi] where f(x)=[4sinx-7] is not derivable is?...

number of values of x belons to [0,pi] where f(x)=[4sinx-7] is not derivable is?

Answer

9

Explanation

Solution

Let

g(x)=4sinx7.g(x) = 4\sin x - 7.

The function f(x)=[g(x)]f(x) = [\,g(x)\,] (floor function) is not differentiable at the points where g(x)g(x) is an integer. For x[0,π]x \in [0,\pi], since sinx[0,1]\sin x \in [0,1], we have:

g(x)[407,417]=[7,3].g(x) \in [4\cdot0-7,\,4\cdot1-7] = [-7,-3].

Thus, the possible integer values are:

k=7,6,5,4,3.k = -7,\,-6,\,-5,\,-4,\,-3.

For each integer kk, we solve:

4sinx7=ksinx=k+74.4\sin x - 7 = k \quad \Rightarrow \quad \sin x = \frac{k+7}{4}.
  • For k=7k = -7:
    sinx=0\sin x = 0.
    Solutions in [0,π][0,\pi] are x=0x = 0 and x=πx = \pi (2 values).

  • For k=6k = -6:
    sinx=14\sin x = \frac{1}{4}.
    Two solutions (one in (0,π/2)(0, \pi/2) and one in (π/2,π)(\pi/2, \pi)) (2 values).

  • For k=5k = -5:
    sinx=12\sin x = \frac{1}{2}.
    Solutions: x=π6x = \frac{\pi}{6} and x=5π6x = \frac{5\pi}{6} (2 values).

  • For k=4k = -4:
    sinx=34\sin x = \frac{3}{4}.
    Two solutions in [0,π][0,\pi] (2 values).

  • For k=3k = -3:
    sinx=1\sin x = 1.
    The unique solution is x=π2x = \frac{\pi}{2} (1 value).

Total points of non-differentiability:

2+2+2+2+1=9.2+2+2+2+1=9.