Question
Question: number of values of x belons to [0,pi] where f(x)=[4sinx-7] is not derivable is?...
number of values of x belons to [0,pi] where f(x)=[4sinx-7] is not derivable is?
Answer
9
Explanation
Solution
Let
g(x)=4sinx−7.The function f(x)=[g(x)] (floor function) is not differentiable at the points where g(x) is an integer. For x∈[0,π], since sinx∈[0,1], we have:
g(x)∈[4⋅0−7,4⋅1−7]=[−7,−3].Thus, the possible integer values are:
k=−7,−6,−5,−4,−3.For each integer k, we solve:
4sinx−7=k⇒sinx=4k+7.-
For k=−7:
sinx=0.
Solutions in [0,π] are x=0 and x=π (2 values). -
For k=−6:
sinx=41.
Two solutions (one in (0,π/2) and one in (π/2,π)) (2 values). -
For k=−5:
sinx=21.
Solutions: x=6π and x=65π (2 values). -
For k=−4:
sinx=43.
Two solutions in [0,π] (2 values). -
For k=−3:
sinx=1.
The unique solution is x=2π (1 value).
Total points of non-differentiability:
2+2+2+2+1=9.