Solveeit Logo

Question

Question: Number of value(s) of \( x \) which satisfy the equation \({\tan ^{ - 1}}\left( {2x - 1} \right) + {...

Number of value(s) of xx which satisfy the equation tan1(2x1)+tan1x+tan1(2x+1)=tan14x{\tan ^{ - 1}}\left( {2x - 1} \right) + {\tan ^{ - 1}}x + {\tan ^{ - 1}}\left( {2x + 1} \right) = {\tan ^{ - 1}}4x is

Explanation

Solution

Hint : Apply inverse trigonometric rules and also use basic concepts of trigonometry to simplify the equation so that you can compute all the values that satisfy the equation.

Complete step-by-step answer :
In this question the equation is given as,
tan1(2x1)+tan1x+tan1(2x+1)=tan14x{\tan ^{ - 1}}\left( {2x - 1} \right) + {\tan ^{ - 1}}x + {\tan ^{ - 1}}\left( {2x + 1} \right) = {\tan ^{ - 1}}4x
We have to find the number of values which satisfy the given equation.
Therefore, tan1(2x1)+tan1x+tan1(2x+1)=tan14x{\tan ^{ - 1}}\left( {2x - 1} \right) + {\tan ^{ - 1}}x + {\tan ^{ - 1}}\left( {2x + 1} \right) = {\tan ^{ - 1}}4x
On transforming the value tan1x{\tan ^{ - 1}}x from left hand side to right hand side we get,
tan1(2x1)+tan1(2x+1)=tan14xtan1x{\tan ^{ - 1}}\left( {2x - 1} \right) + {\tan ^{ - 1}}\left( {2x + 1} \right) = {\tan ^{ - 1}}4x - {\tan ^{ - 1}}x
Now applying the formula of tan1x±tan1y=tan1(x±y1±xy){\tan ^{ - 1}}x \pm {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x \pm y}}{{1 \pm xy}}} \right) on the both side in the above equation we get,
tan1(2x1+2x+11±(2x1)(2x+1))=tan1(4xx1+4x×x)\Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{2x - 1 + 2x + 1}}{{1 \pm (2x - 1)(2x + 1)}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{4x - x}}{{1 + 4x \times x}}} \right)
On simplify the above equation we get,
tan1(4x4x2)=tan1(3x1+4x2){\tan ^{ - 1}}\left( {\dfrac{{4x}}{{4{x^2}}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{3x}}{{-1 + 4{x^2}}}} \right)
On calculating the equation by applying the inverse trigonometric rules we get,
1x=3x1+4x2\dfrac{1}{x} = \dfrac{{3x}}{{-1 + 4{x^2}}}
On cross multiplying the above equation we get,
1+4x2=3x2-1 + 4{x^2} = 3{x^2}
On simplifying the above equation we get, x=±1x = \pm 1
Hence there are two values of x'x' which satisfies the equation is ±1\pm 1 .

Note : In this type of question, you should make use of inverse trigonometric formula such as, tan1x±tan1y=x±y1±y{\tan ^{ - 1}}x \pm {\tan ^{ - 1}}y = \dfrac{{x \pm y}}{{1 \pm y}} , Also use tan[tan1θ]=θ\tan \left[ {{{\tan }^{ - 1}}\theta } \right] = \theta