Solveeit Logo

Question

Question: Number of solutions of the equation\(\mathbf{\tan}\mathbf{x}\mathbf{+}\mathbf{\sec}\mathbf{x}\mathbf...

Number of solutions of the equationtanx+secx=2cosx,\mathbf{\tan}\mathbf{x}\mathbf{+}\mathbf{\sec}\mathbf{x}\mathbf{= 2}\mathbf{\cos}\mathbf{x}\mathbf{,} lying in the interval [0,2π]\lbrack 0,2\pi\rbrack is

A

0

B

1

C

2

D

3

Answer

2

Explanation

Solution

sinxcosx+1cosx=2cosxsinx+1=2cos2x2sin2x+sinx1=0\frac{\sin x}{\cos x} + \frac{1}{\cos x} = 2\cos x \Rightarrow \sin x + 1 = 2\cos^{2}x \Rightarrow 2\sin^{2}x + \sin x - 1 = 0 \Rightarrow [2sinx1][sinx+1]=0\left\lbrack 2\sin x - 1 \right\rbrack\left\lbrack \sin x + 1 \right\rbrack = 0

So, sinx=1\sin x = - 1 or sinx=12x=3π2\sin x = \frac{1}{2} \Rightarrow x = \frac{3\pi}{2} or x=π6,5π6x = \frac{\pi}{6},\frac{5\pi}{6}but 3π2\frac{3\pi}{2}does not satisfy the equation, So total number of solutions=2.= 2.