Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

Number of solutions of the equation tanx+secx=2cosxtanx + secx = 2cosx lying in the interval [0,2π][0,2\pi] is

A

00

B

11

C

22

D

33

Answer

22

Explanation

Solution

Given equation is tanx+secx=2cosxtanx + secx = 2cosx sinxcosx+1cosx=2cosx\Rightarrow \frac{sin\,x}{cos\,x}+\frac{1}{cos\,x}=2cosx 1+sinx=2cos2x\Rightarrow 1+sinx=2cos^{2}x 1+sinx=2(1sin2x)\Rightarrow 1+sinx=2\left(1-sin^{2}x\right) 2sin2x+2sinxsinx1=0\Rightarrow 2sin^{2}x+2sinx-sinx-1=0 2sinx(sinx+1)1(sinx+1)=0\Rightarrow 2sinx\left(sinx + 1\right) - 1\left(sinx +1\right) = 0 (2sinx1)(sinx+1)=0\Rightarrow \left(2sinx - 1\right)\left(sinx +1\right) = 0 \Rightarrow either sinx=12sinx=\frac{1}{2} or sinx=1sinx=-1 \Rightarrow either x=π6,5π6[0,π]x=\frac{\pi}{6}, \frac{5\pi}{6} \in\left[0, \pi\right] or x=3π2x=\frac{3\pi}{2} But x=3π2x=\frac{3\pi}{2} can not be possible. \therefore Number of solutions are 22.