Solveeit Logo

Question

Question: Number of solutions of the equation \(\tan x + \sec x = 2\cos x\) lying in the interval [0. 2π] is...

Number of solutions of the equation tanx+secx=2cosx\tan x + \sec x = 2\cos x lying in the interval [0. 2π] is

A

0

B

1

C

2

D

3

Answer

2

Explanation

Solution

The given equation can be written as sinx+1cosx=2cosx\frac{\sin x + 1}{\cos x} = 2\cos x

sinx+1=2cos2x(cosx0)\sin x + 1 = 2\cos^{2}x\left( \cos x \neq 0 \right)

2sin2x+sinx1=02\sin^{2}x + \sin x - 1 = 0

(2sinx1)(sinx+1)=0\left( 2\sin x - 1 \right)\left( \sin x + 1 \right) = 0

sinx=12\sin x = \frac{1}{2} (sinx+10 as cosx0)\left( \because\sin x + 1 \neq 0\text{ as cosx} \neq 0 \right)

x=π6,5π6x = \frac{\pi}{6},\frac{5\pi}{6}in [0,2π]\lbrack 0,2\pi\rbrack so that required number of solutions is 2.