Solveeit Logo

Question

Question: Number of solution for x between 3 and 15 if \(\int _ { 0 } ^ { \mathrm { x } } [ \mathrm { t } ] \...

Number of solution for x between 3 and 15 if 0x[t]dt=\int _ { 0 } ^ { \mathrm { x } } [ \mathrm { t } ] \mathrm { dt } = 0[x]tdt,\int_{0}^{\lbrack x\rbrack}{tdt,} where [.] denotes greatest integer function, is -

A

12

B

13

C

11

D

Infinitely many

Answer

12

Explanation

Solution

0x[t]dt\int_{0}^{x}{\lbrack t\rbrack dt} = 0[x][t]dt\int_{0}^{\lbrack x\rbrack}{\lbrack t\rbrack dt} + [x][x]+{x}[t]dt\int_{\lbrack x\rbrack}^{\lbrack x\rbrack + \{ x\}}{\lbrack t\rbrack dt} = 0[x]tdt\int_{0}^{\lbrack x\rbrack}{tdt}

\ [x][x]+{x}[t]dt\int_{\lbrack x\rbrack}^{\lbrack x\rbrack + \{ x\}}{\lbrack t\rbrack dt} = 0[x]tdt\int_{0}^{\lbrack x\rbrack}{tdt}0[x][t]dt\int_{0}^{\lbrack x\rbrack}{\lbrack t\rbrack dt} = 0[x]{t}dt\int_{0}^{\lbrack x\rbrack}{\{ t\} dt}

\ {x} [x] = [x] . 12\frac{1}{2}i.e. {x} = 12\frac{1}{2}

thus 3 < x = n + 12\frac{1}{2} < 15 i.e. 3 – 12\frac{1}{2} < n < 15 – 12\frac{1}{2}

\ n can take 12 values.

No. of solutions is 12.