Question
Question: Number of solution for x between 3 and 15 if \(\int _ { 0 } ^ { \mathrm { x } } [ \mathrm { t } ] \...
Number of solution for x between 3 and 15 if ∫0x[t]dt= ∫0[x]tdt, where [.] denotes greatest integer function, is -
A
12
B
13
C
11
D
Infinitely many
Answer
12
Explanation
Solution
∫0x[t]dt = ∫0[x][t]dt + ∫[x][x]+{x}[t]dt = ∫0[x]tdt
\ ∫[x][x]+{x}[t]dt = ∫0[x]tdt – ∫0[x][t]dt = ∫0[x]{t}dt
\ {x} [x] = [x] . 21i.e. {x} = 21
thus 3 < x = n + 21 < 15 i.e. 3 – 21 < n < 15 – 21
\ n can take 12 values.
No. of solutions is 12.