Solveeit Logo

Question

Question: Number of roots of the equation \({{z}^{10}}-{{z}^{5}}-992=0\) where real parts are negative is A....

Number of roots of the equation z10z5992=0{{z}^{10}}-{{z}^{5}}-992=0 where real parts are negative is
A. 33
B. 44
C. 55
D. 66

Explanation

Solution

Hint: Convert z10z5992=0{{z}^{10}}-{{z}^{5}}-992=0 to ax2+bx+c=0a{{x}^{2}}+bx+c=0, for that let us assume z5=t{{z}^{5}}=t. After that, find the roots of the equation and then find the number of roots.

Complete step-by-step solution -

Now here we want to find the number of roots of the equation z10z5992=0{{z}^{10}}-{{z}^{5}}-992=0 .
We are aware that we can solve the equation in the form ax2+bx+c=0a{{x}^{2}}+bx+c=0 and can find the number of roots.
So we have to convert z10z5992=0{{z}^{10}}-{{z}^{5}}-992=0 to ax2+bx+c=0a{{x}^{2}}+bx+c=0 , for that let us assume z5=t{{z}^{5}}=t,
So the equation becomes,
t2t992=0{{t}^{2}}-t-992=0
So solving above quadratic equation we get,

t232t+31t992=0 t(t32)+31(t32)=0 (t32)(t+31)=0 \begin{aligned} & {{t}^{2}}-32t+31t-992=0 \\\ & t(t-32)+31(t-32)=0 \\\ & (t-32)(t+31)=0 \\\ \end{aligned}
So (t32)=0(t-32)=0or (t+31)=0(t+31)=0
So t=32,31t=32,-31
Now we know z5=t{{z}^{5}}=t , So re-substituting we get,
So z5=32{{z}^{5}}=32 or z5=31{{z}^{5}}=-31
So we get, z=(32)15z={{\left( 32 \right)}^{\dfrac{1}{5}}} and z=(31)15z={{\left( -31 \right)}^{\dfrac{1}{5}}} .
So Now z=(32)15=(25)15z={{\left( 32 \right)}^{\dfrac{1}{5}}}={{({{2}^{5}})}^{\dfrac{1}{5}}}
So z=2ei(0+2nπ5)z=2{{e}^{i\left( \dfrac{0+2n\pi }{5} \right)}} ……….. (The argument of 3232 is 00 )
And the value of n will lie from 00 to 44 .
So for n=0n=0 we get,
z=2e0=2z=2{{e}^{0}}=2……….. (1)
For n=1n=1 we get,
z=2ei(2π5)z=2{{e}^{i\left( \dfrac{2\pi }{5} \right)}}…………. (2)
For n=2n=2 we get,

z=2ei(4π5)z=2{{e}^{i\left( \dfrac{4\pi }{5} \right)}}….. (3)
For n=3n=3 we get,
z=2ei(6π5)z=2{{e}^{i\left( \dfrac{6\pi }{5} \right)}}…………… (4)
For n=4n=4 we get,
z=2ei(8π5)z=2{{e}^{i\left( \dfrac{8\pi }{5} \right)}}……….. (5)
Similarly z=(31)15z={{\left( -31 \right)}^{\dfrac{1}{5}}}
So z=(31)15ei(π+2nπ5)z={{(31)}^{\dfrac{1}{5}}}{{e}^{i\left( \dfrac{\pi +2n\pi }{5} \right)}} ……….. (The argument of 31-31 is π\pi )
So let assume (31)15=r{{\left( 31 \right)}^{\dfrac{1}{5}}}=r
So at n=0n=0We get,
z=rei(π+2(0)π5)=rei(π5)z=r{{e}^{i\left( \dfrac{\pi +2(0)\pi }{5} \right)}}=r{{e}^{i\left( \dfrac{\pi }{5} \right)}}…………. (6)
For n=1n=1 we get,
z=rei(π+2(1)π5)=rei(3π5)z=r{{e}^{i\left( \dfrac{\pi +2(1)\pi }{5} \right)}}=r{{e}^{i\left( \dfrac{3\pi }{5} \right)}}………… (7)
For n=2n=2 we get,
z=rei(π+2(2)π5)=rei(π)z=r{{e}^{i\left( \dfrac{\pi +2(2)\pi }{5} \right)}}=r{{e}^{i\left( \pi \right)}}……………. (8)
For n=3n=3 we get,
z=rei(π+2(3)π5)=rei(7π5)z=r{{e}^{i\left( \dfrac{\pi +2(3)\pi }{5} \right)}}=r{{e}^{i\left( \dfrac{7\pi }{5} \right)}}…………….. (9)
For n=4n=4 we get,
z=rei(π+2(4)π5)=rei(9π5)z=r{{e}^{i\left( \dfrac{\pi +2(4)\pi }{5} \right)}}=r{{e}^{i\left( \dfrac{9\pi }{5} \right)}}……………….. (10)
According to the question we are asked that the real part should be negative.
So the condition for the real part to be negative is, the argument should lie between π2\dfrac{\pi }{2} to 3π2\dfrac{3\pi }{2} .
So the arguments which lie between π2\dfrac{\pi }{2} to 3π2\dfrac{3\pi }{2} are (3), (4), (7), (8) and (9).
So the number of roots is 55.

Note: So basically first you have to read the question and understand what is asked. Here the number of roots are 55 but our total roots are 1010 .So if you do not read the question properly then there are chances that you may write it as 1010. You should be clear that the real part to be negative means the argument should lie between π2\dfrac{\pi }{2} to 3π2\dfrac{3\pi }{2} . This concept should be clear.