Solveeit Logo

Question

Mathematics Question on Trigonometric Equations

Number of roots of the equation cos2x+3+12sin?x341=0cos^{2} x + \frac{\sqrt{3} + 1}{2} sin ? x - \frac{\sqrt{3}}{4} - 1 = 0 which lie in the interval [π,π]\left[- \pi , \pi \right] is

A

2

B

4

C

6

D

8

Answer

4

Explanation

Solution

Given equation is 1sin2x+3+12sin?x341=01-sin^{2} x + \frac{\sqrt{3} + 1}{2} sin ? x - \frac{\sqrt{3}}{4} - 1 = 0 ?sin2x3+12sin?x+34=0;4sin2?x23sin?x2sin?x+3=0? \, sin^{2} x - \frac{\sqrt{3} + 1}{2} sin ? x + \frac{\sqrt{3}}{4} = 0 ; 4 sin^{2} ? x - 2 \sqrt{3} sin ? x - 2 sin ? x + \sqrt{3} = 0 2sinx(2sinx3)(2sinx3)=02sinx\left(\right. 2 sin x - \sqrt{3} \left.\right)-\left(\right. 2 sin x - \sqrt{3} \left.\right)=0 (2sinx1)(2sinx3)=0\Rightarrow \left(\right. 2 sin x - 1 \left.\right)\left(\right. 2 sin x - \sqrt{3} \left.\right)=0 On solving we get sinx=12sin x=\frac{1}{2} ;32;\frac{\sqrt{3}}{2} x=π6,5π6;π3,2π3x=\frac{\pi }{6},\frac{5 \pi }{6} \, ;\frac{\pi }{3},\frac{2 \pi }{3}