Solveeit Logo

Question

Question: Number of points , where \(f(x) = \cos \left| x \right| + \left| {\sin x} \right|\) is not different...

Number of points , where f(x)=cosx+sinxf(x) = \cos \left| x \right| + \left| {\sin x} \right| is not differentiable in x[0,4π], is: \in \left[ {0,4\pi } \right],{\text{ is:}}
A. 2
B. 3
C. 4
D. 5

Explanation

Solution

Hint: Find f(x) and f’(x) and continue with differentiability criteria. Observe the nature of given trigonometric functions.

Complete step-by-step answer:
We have been given that x[0,4π] \in \left[ {0,4\pi } \right] for which x=x\left| x \right| = x
f(x)=cosx+sinxf(x) = \cos \left| x \right| + \left| {\sin x} \right|
Now,
f(x)=cosx+sinx 0x<π  =cosxsinx πx<2π  =cosx+sinx 2πx<3π  =cosxsinx 3πx<4π Therefore,  f(x)=sinx+cosx 0x<π  =sinxcosx πx<2π  =sinx+cosx 2πx<3π  =sinxcosx 3πx<4π Now at x=π f(π)=sinπ+cosπ=1 if x < π f(π)=sinπcosπ=1 if x>π   Function is not differentiable at x=π Similarly, we can find that the function is not differentiable at x=2π,3π     f(x) = \cos x + \sin x{\text{ }}0 \leqslant x < \pi \\\ {\text{ }} = \cos x - \sin x{\text{ }}\pi \leqslant x < 2\pi \\\ {\text{ }} = \cos x + \sin x{\text{ 2}}\pi \leqslant x < 3\pi \\\ {\text{ }} = \cos x - \sin x{\text{ 3}}\pi \leqslant x < 4\pi \\\ {\text{Therefore, }} \\\ f'(x) = - \sin x + \cos x{\text{ }}0 \leqslant x < \pi \\\ {\text{ }} = - \sin x - \cos x{\text{ }}\pi \leqslant x < 2\pi \\\ {\text{ }} = - \sin x + \cos x{\text{ 2}}\pi \leqslant x < 3\pi \\\ {\text{ }} = - \sin x - \cos x{\text{ 3}}\pi \leqslant x < 4\pi \\\ {\text{Now at }}x = \pi \\\ f'(\pi ) = - \sin \pi + \cos \pi = - 1{\text{ if x < }}\pi \\\ f'(\pi ) = - \sin \pi - \cos \pi = 1{\text{ if x}} > \pi \\\ {\text{ }}\therefore {\text{ Function is not differentiable at }}x = \pi \\\ {\text{Similarly, we can find that the function is not differentiable at }}x = 2\pi ,3\pi \\\ \\\ {\text{ }} \\\
Also, any function is not differentiable at the end points for a given closed interval. So the function is not differentiable at x=0, 4π4\pi
Therefore the answer is 5.

Note: One must remember the range and nature of trigonometric functions in order to solve such similar problems.