Solveeit Logo

Question

Question: Number of ordered triplets (a, b, c) of positive integers less than 10, for which the product abc is...

Number of ordered triplets (a, b, c) of positive integers less than 10, for which the product abc is divisible by 20, are –

A

48

B

102

C

54

D

51

Answer

102

Explanation

Solution

Sol. Case-I

a, b, c having exactly one 5 with

(i) 2 even digits (different or same)

4C2.3+4C1.32=484C_{2}.\begin{matrix} \begin{matrix} 3 \end{matrix} + \end{matrix}^{4}C_{1}.\begin{matrix} \frac{\begin{matrix} 3 \end{matrix}}{\begin{matrix} 2 \end{matrix}} = 48 \end{matrix}

(ii) one digit divisible by 4 and one odd

\begin{matrix} 3 \end{matrix} = 48 \end{matrix}$$ **Case-II** a, b, c having exactly two 5 with : one digit divisible by 4, 2 .$\begin{matrix} \frac{\begin{matrix} 3 \end{matrix}}{\begin{matrix} 2 \end{matrix}} \end{matrix}$= 6 Hence total number of ways = 102