Question
Question: Number of one-one functions from A to B where n(A)= 4 and n(B)= 5. a). 4 b). 5 c). 120 d). 9...
Number of one-one functions from A to B where n(A)= 4 and n(B)= 5.
a). 4
b). 5
c). 120
d). 90
Solution
Type of questions is based on the function topic more precisely on the classification of Function. As there are five types of functions
i). one-one function
ii). many one function
iii). onto function
iv). into function
v). Bijective function
Complete step-by-step solution:
One –one function is also known as injective function. A one-one function is a function in which for one input we get one output. As to find one –one function we had a direct formula through which we can easily find the one-one function of ‘A’ to ‘B’.
The formula is nPm only if n≥m
In which ‘n’ and ‘m’ are the number of elements of B and A respectively. and where p is for permutation, which is further solved as (n−m)!n!
Moving further with our question where
n(A)= number of elements of A= 4= m
n(B)= number of elements of B= 5= n
So by comparing it with above formula ‘m’ = 4 and ‘n’= 5
On solving we will get