Question
Chemistry Question on Molecular Orbital Theory
Number of molecules having bond order 2 from the following molecule is ...................
C2,O2,Be2,Li2,Ne2,N2,He2
The bond order (B.O.) is calculated using the formula:
B.O.=2Number of bonding electrons−Number of antibonding electrons.
{C2:}
(12e−):σ1s2,σ1s∗2,σ2s2,σ2s∗2,[π2px=π2py]4.
B.O.=28−4=2.
{O2:} (16e−):σ1s2,σ1s∗2,σ2s2,σ2s∗2,σ2pz2,[π2px=π2py]4,[π2px∗=π2py∗]2.
B.O.=210−6=2.
{Be2:} (8e−):σ1s2,σ1s∗2,σ2s2,σ2s∗2.
B.O.=24−4=0.
{Li2:} (6e−):σ1s2,σ1s∗2,σ2s2.
B.O.=24−2=1.
{Ne2:} (20e−):σ1s2,σ1s∗2,σ2s2,σ2s∗2,σ2pz2,[π2px=π2py]4,[π2px∗=π2py∗]4,σ2pz∗2.
B.O.=210−10=0.
{N2:} (14e−):σ1s2,σ1s∗2,σ2s2,σ2s∗2,π2px2,π2py2,σ2pz2.
B.O.=210−4=3.
{H2:} (2e−):σ1s2.
B.O.=22−0=1.
Molecules with bond order 2: C2 and O2.
Solution
The bond order (B.O.) is calculated using the formula:
B.O.=2Number of bonding electrons−Number of antibonding electrons.
{C2:}
(12e−):σ1s2,σ1s∗2,σ2s2,σ2s∗2,[π2px=π2py]4.
B.O.=28−4=2.
{O2:} (16e−):σ1s2,σ1s∗2,σ2s2,σ2s∗2,σ2pz2,[π2px=π2py]4,[π2px∗=π2py∗]2.
B.O.=210−6=2.
{Be2:} (8e−):σ1s2,σ1s∗2,σ2s2,σ2s∗2.
B.O.=24−4=0.
{Li2:} (6e−):σ1s2,σ1s∗2,σ2s2.
B.O.=24−2=1.
{Ne2:} (20e−):σ1s2,σ1s∗2,σ2s2,σ2s∗2,σ2pz2,[π2px=π2py]4,[π2px∗=π2py∗]4,σ2pz∗2.
B.O.=210−10=0.
{N2:} (14e−):σ1s2,σ1s∗2,σ2s2,σ2s∗2,π2px2,π2py2,σ2pz2.
B.O.=210−4=3.
{H2:} (2e−):σ1s2.
B.O.=22−0=1.
Molecules with bond order 2: C2 and O2.