Solveeit Logo

Question

Question: Number of elements in set of values of \(r\) for which \({}^{18}{{C}_{r-2}}+2\times {}^{18}{{C}_{r-1...

Number of elements in set of values of rr for which 18Cr2+2×18Cr1+18Cr20C13{}^{18}{{C}_{r-2}}+2\times {}^{18}{{C}_{r-1}}+{}^{18}{{C}_{r}}\ge {}^{20}{{C}_{13}} is satisfied.
A. 4
B. 5
C. 7
D. 10

Explanation

Solution

We first find the right substitution for nCm+nCm1=n+1Cm{}^{n}{{C}_{m}}+{}^{n}{{C}_{m-1}}={}^{n+1}{{C}_{m}}. We use the identity to find the simplified form of 18Cr2+2×18Cr1+18Cr{}^{18}{{C}_{r-2}}+2\times {}^{18}{{C}_{r-1}}+{}^{18}{{C}_{r}}. Then we use the increasing and decreasing value to find the values for rr which satisfies 18Cr2+2×18Cr1+18Cr20C13{}^{18}{{C}_{r-2}}+2\times {}^{18}{{C}_{r-1}}+{}^{18}{{C}_{r}}\ge {}^{20}{{C}_{13}}.

Complete step by step solution:
In this problem, we use the relation of combinations where nCm+nCm1=n+1Cm{}^{n}{{C}_{m}}+{}^{n}{{C}_{m-1}}={}^{n+1}{{C}_{m}}.
We complete the summation in the left part of the 18Cr2+2×18Cr1+18Cr20C13{}^{18}{{C}_{r-2}}+2\times {}^{18}{{C}_{r-1}}+{}^{18}{{C}_{r}}\ge {}^{20}{{C}_{13}}.
We take two at a time, breaking the middle one.
So, 18Cr2+2×18Cr1+18Cr=(18Cr2+18Cr1)+(18Cr1+18Cr){}^{18}{{C}_{r-2}}+2\times {}^{18}{{C}_{r-1}}+{}^{18}{{C}_{r}}=\left( {}^{18}{{C}_{r-2}}+{}^{18}{{C}_{r-1}} \right)+\left( {}^{18}{{C}_{r-1}}+{}^{18}{{C}_{r}} \right).
For (18Cr2+18Cr1)\left( {}^{18}{{C}_{r-2}}+{}^{18}{{C}_{r-1}} \right), we apply n=18,m=r1n=18,m=r-1. We get 18Cr2+18Cr1=19Cr1{}^{18}{{C}_{r-2}}+{}^{18}{{C}_{r-1}}={}^{19}{{C}_{r-1}}.
For (18Cr+18Cr1)\left( {}^{18}{{C}_{r}}+{}^{18}{{C}_{r-1}} \right), we apply n=18,m=rn=18,m=r. We get 18Cr+18Cr1=19Cr{}^{18}{{C}_{r}}+{}^{18}{{C}_{r-1}}={}^{19}{{C}_{r}}.
So, 18Cr2+2×18Cr1+18Cr=19Cr1+19Cr{}^{18}{{C}_{r-2}}+2\times {}^{18}{{C}_{r-1}}+{}^{18}{{C}_{r}}={}^{19}{{C}_{r-1}}+{}^{19}{{C}_{r}}.
For 19Cr1+19Cr{}^{19}{{C}_{r-1}}+{}^{19}{{C}_{r}}, we apply n=19,m=rn=19,m=r. We get 19Cr1+19Cr=20Cr{}^{19}{{C}_{r-1}}+{}^{19}{{C}_{r}}={}^{20}{{C}_{r}}.
Therefore, 18Cr2+2×18Cr1+18Cr=20Cr{}^{18}{{C}_{r-2}}+2\times {}^{18}{{C}_{r-1}}+{}^{18}{{C}_{r}}={}^{20}{{C}_{r}}. We get 20Cr20C13{}^{20}{{C}_{r}}\ge {}^{20}{{C}_{13}}.
Now we know that nCm=nCnm{}^{n}{{C}_{m}}={}^{n}{{C}_{n-m}}. So, to discuss rr in 20Cr20C13{}^{20}{{C}_{r}}\ge {}^{20}{{C}_{13}}, we use the values from 10 to 20.
We get 20C20=1,20C19=20,20C18=190,....{}^{20}{{C}_{20}}=1,{}^{20}{{C}_{19}}=20,{}^{20}{{C}_{18}}=190,.....
So, we can see the more we get towards 10, the value gets bigger than the previous one.
Therefore, 20C13=20C13{}^{20}{{C}_{13}}={}^{20}{{C}_{13}}, 20C1220C13{}^{20}{{C}_{12}}\ge {}^{20}{{C}_{13}}, 20C1120C13{}^{20}{{C}_{11}}\ge {}^{20}{{C}_{13}}, 20C1020C13{}^{20}{{C}_{10}}\ge {}^{20}{{C}_{13}}.
All these values of r=10,11,12,13r=10,11,12,13 satisfies 18Cr2+2×18Cr1+18Cr20C13{}^{18}{{C}_{r-2}}+2\times {}^{18}{{C}_{r-1}}+{}^{18}{{C}_{r}}\ge {}^{20}{{C}_{13}}.
The correct option is A.

Note: There are some constraints in the form of nCr=n!r!×(nr)!{}^{n}{{C}_{r}}=\dfrac{n!}{r!\times \left( n-r \right)!}. The general conditions are nr0;n0n\ge r\ge 0;n\ne 0. Also, we need to remember the fact that the notion of choosing r objects out of n objects is exactly equal to the notion of choosing (nr)\left( n-r \right) objects out of n objects. The mathematical expression is nCr=n!r!×(nr)!=nCnr{}^{n}{{C}_{r}}=\dfrac{n!}{r!\times \left( n-r \right)!}={}^{n}{{C}_{n-r}}.