Solveeit Logo

Question

Question: Number of distinct solutions of \( \sec x + \tan x = \sqrt 3 ,x \in \left[ {0,3\pi } \right] \) i...

Number of distinct solutions of
secx+tanx=3,x[0,3π]\sec x + \tan x = \sqrt 3 ,x \in \left[ {0,3\pi } \right] is

Explanation

Solution

Hint : In this question, to find the distinct solutions of the equation secx+tanx=3\sec x + \tan x = \sqrt 3 , we need to substitute secx as 1cosx\dfrac{1}{{\cos x}} and tanx as sinxcosx\dfrac{{\sin x}}{{\cos x}} . Now, simplify the equation and then divide the whole equation with two. Then use the formulas
cosπ6=32\Rightarrow \cos \dfrac{\pi }{6} = \dfrac{{\sqrt 3 }}{2}
sinπ6=12\Rightarrow \sin \dfrac{\pi }{6} = \dfrac{1}{2}
cosπ3=12\Rightarrow \cos \dfrac{\pi }{3} = \dfrac{1}{2}
After substituting these values, use the formula cosAcosBsinAsinB=cos(A+B)\cos A\cos B - \sin A\sin B = \cos \left( {A + B} \right) . Now we have cos terms on both sides of the equation. So, we can now easily find the solution for x.

Complete step-by-step answer :
In this question, we are given a trigonometric equation and are supposed to find its number of distinct solutions.
The given equation is: secx+tanx=3\sec x + \tan x = \sqrt 3 - - - - - - - - - - - - - - (1)
Now, for solving this equation, we are going to use some trigonometric relations.
First of all, we can write secx as the inverse of cosx that is 1cosx\dfrac{1}{{\cos x}} and we can write tanx as sinxcosx\dfrac{{\sin x}}{{\cos x}} .
Therefore, equation (1) becomes

secx+tanx=3 1cosx+sinxcosx=3  \Rightarrow \sec x + \tan x = \sqrt 3 \\\ \Rightarrow \dfrac{1}{{\cos x}} + \dfrac{{\sin x}}{{\cos x}} = \sqrt 3 \\\

Now, take cos x as a common denominator and take it to the LHS of the equation.
Therefore, we get

1+sinxcosx=3 1+sinx=3cosx  \Rightarrow \dfrac{{1 + \sin x}}{{\cos x}} = \sqrt 3 \\\ \Rightarrow 1 + \sin x = \sqrt 3 \cos x \\\

3cosxsinx=1 \Rightarrow \sqrt 3 \cos x - \sin x = 1 - - - - - - - - (2)
Now, here we will be dividing equation (2) with 2. Therefore, equation (2) becomes
32cosx12sinx=12\Rightarrow \dfrac{{\sqrt 3 }}{2}\cos x - \dfrac{1}{2}\sin x = \dfrac{1}{2}- - - - - - - - (3)
Now, we know that cosπ6=32\cos \dfrac{\pi }{6} = \dfrac{{\sqrt 3 }}{2} and sinπ6=12\sin \dfrac{\pi }{6} = \dfrac{1}{2} and cosπ3=12\cos \dfrac{\pi }{3} = \dfrac{1}{2} . Therefore, substituting these values
in equation (3), we get
cosπ6cosxsinπ6sinx=cosπ3\Rightarrow \cos \dfrac{\pi }{6}\cos x - \sin \dfrac{\pi }{6}\sin x = \cos \dfrac{\pi }{3}
Now, we know the formula cosAcosBsinAsinB=cos(A+B)\cos A\cos B - \sin A\sin B = \cos \left( {A + B} \right) .Therefore, we get
cos(x+π6)=cosπ3\Rightarrow \cos \left( {x + \dfrac{\pi }{6}} \right) = \cos \dfrac{\pi }{3}
Now, we know that when cosx=cosy\cos x = \cos y , we can say that x=yx = y . Therefore, we get

x+π6=2nπ±π3 x=2nπ±π3π6  \Rightarrow x + \dfrac{\pi }{6} = 2n\pi \pm \dfrac{\pi }{3} \\\ \Rightarrow x = 2n\pi \pm \dfrac{\pi }{3} - \dfrac{\pi }{6} \\\

x=2nπ+π3π6 x=2nπ+π6  \Rightarrow x = 2n\pi + \dfrac{\pi }{3} - \dfrac{\pi }{6} \\\ \Rightarrow x = 2n\pi + \dfrac{\pi }{6} \\\
And
x=2nππ3π6 x=2nππ2  \Rightarrow x = 2n\pi - \dfrac{\pi }{3} - \dfrac{\pi }{6} \\\ \Rightarrow x = 2n\pi - \dfrac{\pi }{2} \\\
Now, we have to find the solutions in the range [0,3π]\left[ {0,3\pi } \right] .
For n=0n = 0 :
x=2nπ+π6=π6\Rightarrow x = 2n\pi + \dfrac{\pi }{6} = \dfrac{\pi }{6}
x=2nππ2=π2\Rightarrow x = 2n\pi - \dfrac{\pi }{2} = - \dfrac{\pi }{2}
But, π2[0,3π]- \dfrac{\pi }{2} \notin \left[ {0,3\pi } \right] .
For n=1n = 1 :
x=2nπ+π6=2π+π6=13π6\Rightarrow x = 2n\pi + \dfrac{\pi }{6} = 2\pi + \dfrac{\pi }{6} = \dfrac{{13\pi }}{6}
x=2nππ2=2ππ2=3π2\Rightarrow x = 2n\pi - \dfrac{\pi }{2} = 2\pi - \dfrac{\pi }{2} = \dfrac{{3\pi }}{2}

For n=1n = - 1 :
x=2nπ+π6=2π+π6=11π6\Rightarrow x = 2n\pi + \dfrac{\pi }{6} = - 2\pi + \dfrac{\pi }{6} = \dfrac{{ - 11\pi }}{6}
But, 11π6[0,3π]- \dfrac{{11\pi }}{6} \notin \left[ {0,3\pi } \right] .
x=2nππ2=2ππ2=5π2\Rightarrow x = 2n\pi - \dfrac{\pi }{2} = - 2\pi - \dfrac{\pi }{2} = \dfrac{{ - 5\pi }}{2}
But, 5π2[0,3π]\dfrac{{ - 5\pi }}{2} \notin \left[ {0,3\pi } \right] .
For n=2n = 2
x=2nπ+π6=4π+π6\Rightarrow x = 2n\pi + \dfrac{\pi }{6} = 4\pi + \dfrac{\pi }{6}
But, 4π+π6[0,3π]4\pi + \dfrac{\pi }{6} \notin \left[ {0,3\pi } \right] .
x=2nππ2=4ππ2\Rightarrow x = 2n\pi - \dfrac{\pi }{2} = 4\pi - \dfrac{\pi }{2}
But, 4ππ2[0,3π]4\pi - \dfrac{\pi }{2} \notin \left[ {0,3\pi } \right] .
Hence, the only possible values of x are π6,13π6,3π2\dfrac{\pi }{6},\dfrac{{13\pi }}{6},\dfrac{{3\pi }}{2} .
So, the correct answer is “ π6,13π6,3π2\dfrac{\pi }{6},\dfrac{{13\pi }}{6},\dfrac{{3\pi }}{2} .”.

Note : We can also solve this question using the identity 1+tan2x=sec2x1 + {\tan ^2}x = {\sec ^2}x .
sec2xtan2x=1 (secxtanx)(secx+tanx)=1   \Rightarrow {\sec ^2}x - {\tan ^2}x = 1 \\\ \Rightarrow \left( {\sec x - \tan x} \right)\left( {\sec x + \tan x} \right) = 1 \;
Now, secx+tanx=3\sec x + \tan x = \sqrt 3 . Therefore
(secxtanx)3=1\Rightarrow \left( {\sec x - \tan x} \right)\sqrt 3 = 1
secxtanx=13\Rightarrow \sec x - \tan x = \dfrac{1}{{\sqrt 3 }} - - - - - - (3)
Adding equation (1) and (2),we get
secx+tanx=3 secxtanx=13  2secx=3+13  \underline \sec x + \tan x = \sqrt 3 \\\ \sec x - \tan x = \dfrac{1}{{\sqrt 3 }} \\\ \\\ 2\sec x = \sqrt 3 + \dfrac{1}{{\sqrt 3 }} \\\
2cosx=43 cosx=32   \Rightarrow \dfrac{2}{{\cos x}} = \dfrac{4}{{\sqrt 3 }} \\\ \Rightarrow \cos x = \dfrac{{\sqrt 3 }}{2} \;
Now, the value of cosx is positive only in the 1st and 4th quadrant. So, the values of x will be
0+π6,2ππ6,2π+π60 + \dfrac{\pi }{6},2\pi - \dfrac{\pi }{6},2\pi + \dfrac{\pi }{6}
Therefore, the solutions for secx+tanx=3\sec x + \tan x = \sqrt 3 will be π6,13π6,3π2\dfrac{\pi }{6},\dfrac{{13\pi }}{6},\dfrac{{3\pi }}{2} .