Solveeit Logo

Question

Question: Number of distinct roots of D =\(\left| \begin{matrix} \tan x & \cot x & \cot x \\ \cot x & \tan x &...

Number of distinct roots of D =tanxcotxcotxcotxtanxcotxcotxcotxtanx\left| \begin{matrix} \tan x & \cot x & \cot x \\ \cot x & \tan x & \cot x \\ \cot x & \cot x & \tan x \end{matrix} \right| = 0

in the interval [π4,π4]\left\lbrack - \frac{\pi}{4},\frac{\pi}{4} \right\rbrack is

A

0

B

2

C

1

D

3

Answer

2

Explanation

Solution

D = (tan x + 2 cot x) 1cotxcotx1tanxcotx1cotxtanx\left| \begin{matrix} 1 & \cot x & \cot x \\ 1 & \tan x & \cot x \\ 1 & \cot x & \tan x \end{matrix} \right| = 0

or (tan x + 2 cot x) (tan x – cot x)2 = 0