Solveeit Logo

Question

Chemistry Question on Coordination chemistry

Number of complexes with even number of electrons in t2gt_{2g} orbitals is: [Fe(H2O)6]2+,[Co(H2O)6]2+,[Co(H2O)6]3+,[Cu(H2O)6]2+,[Cr(H2O)6]2+[\text{Fe(H}_2\text{O)}_6]^{2+}, \, [\text{Co(H}_2\text{O)}_6]^{2+}, \, [\text{Co(H}_2\text{O)}_6]^{3+}, \, [\text{Cu(H}_2\text{O)}_6]^{2+}, \, [\text{Cr(H}_2\text{O)}_6]^{2+}

A

1

B

3

C

2

D

5

Answer

3

Explanation

Solution

To determine the number of complexes with an even number of electrons in t2gt_{2g} orbitals, we calculate the electronic configuration of the central metal ion in each complex:
[Fe(H2O)6]2+[\text{Fe}(\text{H}_2\text{O})_6]^{2+}: Fe2+^{2+} has (3d6)(3d^6) configuration. In an octahedral field:
t2g4eg2(4electrons in t2g)t_{2g}^4e_g^2 \quad (4 \, \text{electrons in } t_{2g})
Even number of electrons in t2gt_{2g}.
[Co(H2O)6]2+[\text{Co}(\text{H}_2\text{O})_6]^{2+}: Co2+^{2+} has (3d7)(3d^7) configuration. In an octahedral field:
t2g5eg2(5electrons in t2g)t_{2g}^5e_g^2 \quad (5 \, \text{electrons in } t_{2g})
Odd number of electrons in t2gt_{2g}.
[Co(H2O)6]3+[\text{Co}(\text{H}_2\text{O})_6]^{3+}: Co3+^{3+} has (3d6)(3d^6) configuration. In an octahedral field:
t2g6eg0(6electrons in t2g)t_{2g}^6e_g^0 \quad (6 \, \text{electrons in } t_{2g})
Even number of electrons in t2gt_{2g}.
[Cu(H2O)6]2+[\text{Cu}(\text{H}_2\text{O})_6]^{2+}: Cu2+^{2+} has (3d9)(3d^9) configuration. In an octahedral field:
t2g6eg3(6electrons in t2g)t_{2g}^6e_g^3 \quad (6 \, \text{electrons in } t_{2g})
Even number of electrons in t2gt_{2g}.
[Cr(H2O)6]2+[\text{Cr}(\text{H}_2\text{O})_6]^{2+}: Cr2+^{2+} has (3d4)(3d^4) configuration. In an octahedral field:
t2g3eg1(3electrons in t2g)t_{2g}^3e_g^1 \quad (3 \, \text{electrons in } t_{2g})
Odd number of electrons in t2gt_{2g}.
Complexes with even number of electrons in t2gt_{2g} orbitals are:
[Fe(H2O)6]2+,[Co(H2O)6]3+,[Cu(H2O)6]2+[\text{Fe}(\text{H}_2\text{O})_6]^{2+}, \, [\text{Co}(\text{H}_2\text{O})_6]^{3+}, \, [\text{Cu}(\text{H}_2\text{O})_6]^{2+}
Final Answer: 3 complexes.