Solveeit Logo

Question

Question: Number of complex numbers \( z \) such that \( \left| z \right| = 1 \) and \( \left| {\dfrac{z}{{\ba...

Number of complex numbers zz such that z=1\left| z \right| = 1 and zzˉ+zˉz=1\left| {\dfrac{z}{{\bar z}} + \dfrac{{\bar z}}{z}} \right| = 1 is (arg(z)[0,2π])\left( {\arg \left( z \right) \in \left[ {0,2\pi } \right]} \right) .
A. 44
B. 66
C. 88
D.More than 88

Explanation

Solution

Hint : We know that zzˉ=z2\left| {z\bar z} \right| = {\left| z \right|^2} .So, z2+zˉ2\left| {{z^2} + {{\bar z}^2}} \right| will be equal to 1. Instead of zz take z=x+iyz = x + iy . And then substituting the value of zz we will get x2y2=12{x^2} - {y^2} = \dfrac{1}{2} and we also know that x2+y2=1{x^2} + {y^2} = 1 . Solve that equation then we get the values of xx and yy .

Complete step-by-step answer :
It is given that z=1\left| z \right| = 1 .
Also, given that z2+zˉ2zˉz=1\left| {\dfrac{{{z^2} + {{\bar z}^2}}}{{\bar zz}}} \right| = 1 .........(1)
Since it is known that zzˉ=z2z\bar z = {\left| z \right|^2}
Since, we know that z=1\left| z \right| = 1 , so we can say that zzˉ=1z\bar z = 1 .
Substitute the value zzˉ=1z\bar z = 1 in the equation (1), we get,
z2+zˉ2=1\left| {{z^2} + {{\bar z}^2}} \right| = 1 ..........(2)
Since, zz is a complex number the value of zz as x+iyx + iy where x,yx,y are real and ii is imaginary number.
We know the formula to find the conjugate of zz is xiyx - iy .
Since, the value of z is z=x+iyz = x + iy .
Then if we square on both sides we get,
z2=(x+iy)2 =(x+iy)(x+iy) =x2y2+2ixy\begin{array}{c} {z^2} = {\left( {x + iy} \right)^2}\\\ = \left( {x + iy} \right)\left( {x + iy} \right)\\\ = {x^2} - {y^2} + 2ixy \end{array} .........(3)
Since, we know zˉ=xiy\bar z = x - iy . If we square on both sides for the equation we get,
zˉ2=(xiy)2 =(xiy)(xiy) =x2y22ixy\begin{array}{c} {{\bar z}^2} = {\left( {x - iy} \right)^2}\\\ = \left( {x - iy} \right)\left( {x - iy} \right)\\\ = {x^2} - {y^2} - 2ixy \end{array} ..............(4)
On substituting (3) and (4) in (2) we get,
z2+zˉ2=1 x2y2+2ixy+x2y22ixy=1\begin{array}{c} \left| {{z^2} + {{\bar z}^2}} \right| = 1\\\ \left| {{x^2} - {y^2} + 2ixy + {x^2} - {y^2} - 2ixy} \right| = 1 \end{array}
Now, in the above equation equal but opposite sines 2ixy2ixy and 2ixy- 2ixy will get cancelled, we obtain,
2x22y2=1 x2y2=12\begin{array}{c} \left| {2{x^2} - 2{y^2}} \right| = 1\\\ {x^2} - {y^2} = \dfrac{1}{2} \end{array} ..............(5)
And it is known that z2=1{\left| z \right|^2} = 1 since z=x+iyz = x + iy we get,
x+iy2=1 x2+y2=1\begin{array}{l} {\left| {x + iy} \right|^2} = 1\\\ {x^2} + {y^2} = 1 \end{array} ............(6)
On equating the equations (5) and (6) we get,
2x2=12+1 2x2=32 x2=34\begin{array}{c} 2{x^2} = \dfrac{1}{2} + 1\\\ 2{x^2} = \dfrac{3}{2}\\\ {x^2} = \dfrac{3}{4} \end{array}
If we take the square root on both sides we get,
x=±32x = \pm \dfrac{{\sqrt 3 }}{2}
On substituting the value of xx in (5) we get,
34y2=12 3412=y2 y2=3424\begin{array}{c} \dfrac{3}{4} - {y^2} = \dfrac{1}{2}\\\ \dfrac{3}{4} - \dfrac{1}{2} = {y^2}\\\ {y^2} = \dfrac{3}{4} - \dfrac{2}{4} \end{array}
The value for y2{y^2} will be calculated as,
y2=14{y^2} = \dfrac{1}{4}
Taking the square root on both sides we get,
y=±12y = \pm \dfrac{1}{2}
Hence, the value of y is 12\dfrac{1}{2} and 12- \dfrac{1}{2} .
The possible complex numbers are z=32+i12z = \dfrac{{\sqrt 3 }}{2} + i\dfrac{1}{2} , z=32i12z = \dfrac{{\sqrt 3 }}{2} - i\dfrac{1}{2} , z=32+i12z = - \dfrac{{\sqrt 3 }}{2} + i\dfrac{1}{2} and z=32i2z = \dfrac{-{\sqrt 3 }}{2} - \dfrac{i}{2}.
Therefore, the complex numbers zz are 44.
So, the correct answer is “Option A”.

Note : Always the value of z\left| z \right| will not be one. In complex numbers if the imaginary part is zero that is y=0y = 0 then the complex number is real. In the complex number if the real number is zero that is x=0x = 0 the complex number is purely imaginary .