Solveeit Logo

Question

Question: Normal to the ellipse \(\frac{x^{2}}{84} + \frac{y^{2}}{49} = 1\) intersects the major and minor axi...

Normal to the ellipse x284+y249=1\frac{x^{2}}{84} + \frac{y^{2}}{49} = 1 intersects the major and minor axis at P and Q respectively then locus of the point dividing segment PQ in 2 : 1 is –

A

64x225+49y2100=1\frac{64x^{2}}{25} + \frac{49y^{2}}{100} = 1

B

64x2100+49y225=1\frac{64x^{2}}{100} + \frac{49y^{2}}{25} = 1

C

64x2 + 49y2 = 225

D

49x2100+64y225=1\frac{49x^{2}}{100} + \frac{64y^{2}}{25} = 1

Answer

64x225+49y2100=1\frac{64x^{2}}{25} + \frac{49y^{2}}{100} = 1

Explanation

Solution

Equation of normal 8x secq – 7y cosecq = 15

P(158cosθ,0)P\left( \frac{15}{8}\cos\theta,0 \right), Q (0,157sinθ)\left( 0,\frac{- 15}{7}\sin\theta \right)

3h = 158cosθ\frac{15}{8}\cos\theta, 3k = 307sinθ- \frac{30}{7}\sin\theta

cosq = 8h5\frac{8h}{5}, sinq = 7k10\frac{- 7k}{10}

hence locus 64x225+49y2100\frac{64x^{2}}{25} + \frac{49y^{2}}{100} = 1