Solveeit Logo

Question

Mathematics Question on Tangents and Normals

Normal at (1,1)(1, 1) on the curve 2y=9x22y=9-x^2 is

A

x+y=0x + y = 0

B

xy=0x - y = 0

C

x2y=0- x - 2y = 0

D

2xy=0.2x -y = 0.

Answer

xy=0x - y = 0

Explanation

Solution

Equation of curve 2y=9x22y = 9 - x^2 2dydx=2x\therefore 2 \frac{dy}{dx}=-2x dydx=x\Rightarrow \frac{dy}{dx}=-x dydxat(1,1)=1\therefore \left|\frac{dy}{dx}\right|_{at \left(1, 1\right)}=-1 \therefore slope of the normal =1(dydx)(1,1)=1=-\frac{1}{\left(\frac{dy}{dx}\right)_{\left(1,1\right)}}=1 \therefore equation of normal at (1,1)\left(1, 1\right) is y1=1(x1)y - 1 = 1\left(x - 1\right) yx=11\Rightarrow y-x=1-1 yx=0\Rightarrow y-x=0 xy=0\Rightarrow x-y=0