Solveeit Logo

Question

Question: If 2 tan⁻¹(cos x) = tan⁻¹(2 cosec x) then sinx + cosx =...

If 2 tan⁻¹(cos x) = tan⁻¹(2 cosec x) then sinx + cosx =

A

2√2

B

√2

C

12\frac{1}{\sqrt{2}}

D

12\frac{1}{2}

Answer

√2

Explanation

Solution

To solve the equation 2tan1(cosx)=tan1(2cscx)2 \tan^{-1}(\cos x) = \tan^{-1}(2 \csc x), we take the tangent of both sides. Using the identity tan(2A)=2tanA1tan2A\tan(2A) = \frac{2 \tan A}{1 - \tan^2 A} with A=tan1(cosx)A = \tan^{-1}(\cos x), we have:

tan(2tan1(cosx))=2cosx1cos2x=2cosxsin2x\tan(2 \tan^{-1}(\cos x)) = \frac{2 \cos x}{1 - \cos^2 x} = \frac{2 \cos x}{\sin^2 x}

Also, tan(tan1(2cscx))=2cscx=2sinx\tan(\tan^{-1}(2 \csc x)) = 2 \csc x = \frac{2}{\sin x}. Equating the two expressions:

2cosxsin2x=2sinx\frac{2 \cos x}{\sin^2 x} = \frac{2}{\sin x} cosx=sinx\cos x = \sin x tanx=1\tan x = 1 x=π4+kπ,kZx = \frac{\pi}{4} + k\pi, \quad k \in \mathbb{Z}

For the principal value x=π4x = \frac{\pi}{4}, we have:

sinx+cosx=sinπ4+cosπ4=12+12=22=2\sin x + \cos x = \sin \frac{\pi}{4} + \cos \frac{\pi}{4} = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \frac{2}{\sqrt{2}} = \sqrt{2}

Therefore, sinx+cosx=2\sin x + \cos x = \sqrt{2}.