Question
Question: If 2 tan⁻¹(cos x) = tan⁻¹(2 cosec x) then sinx + cosx =...
If 2 tan⁻¹(cos x) = tan⁻¹(2 cosec x) then sinx + cosx =

A
2√2
B
√2
C
21
D
21
Answer
√2
Explanation
Solution
To solve the equation 2tan−1(cosx)=tan−1(2cscx), we take the tangent of both sides. Using the identity tan(2A)=1−tan2A2tanA with A=tan−1(cosx), we have:
tan(2tan−1(cosx))=1−cos2x2cosx=sin2x2cosxAlso, tan(tan−1(2cscx))=2cscx=sinx2. Equating the two expressions:
sin2x2cosx=sinx2 cosx=sinx tanx=1 x=4π+kπ,k∈ZFor the principal value x=4π, we have:
sinx+cosx=sin4π+cos4π=21+21=22=2Therefore, sinx+cosx=2.