Solveeit Logo

Question

Question: A series of lines in the spectrum of atomic H lies at wavelengths 656.46486.27, 434.17, 410.29 mm . ...

A series of lines in the spectrum of atomic H lies at wavelengths 656.46486.27, 434.17, 410.29 mm . What is the wavelength of next line in this series?

A

356

B

375

C

397.2

D

328

Answer

397.2

Explanation

Solution

The given wavelengths (656.46 nm, 486.27 nm, 434.17 nm, 410.29 nm) correspond to the Balmer series of the hydrogen atom, where transitions end at the energy level nf=2n_f = 2. These lines are from transitions originating from higher energy levels ni=3,4,5,6n_i = 3, 4, 5, 6 respectively. The Rydberg formula for the wavelength λ\lambda of spectral lines in a hydrogen atom is: 1λ=RH(1nf21ni2)\frac{1}{\lambda} = R_H \left( \frac{1}{n_f^2} - \frac{1}{n_i^2} \right) where RHR_H is the Rydberg constant.

For the Balmer series (nf=2n_f=2), the wavelengths are for ni=3,4,5,6n_i=3, 4, 5, 6. The question asks for the wavelength of the next line in this series, which corresponds to the transition from the next higher energy level, ni=7n_i=7, to nf=2n_f=2.

Using the first line λ1=656.46nm\lambda_1 = 656.46 \, \text{nm} for ni=3n_i=3 and nf=2n_f=2, we can determine the effective Rydberg constant for this problem: RH=1λ1(1nf21ni2)1=1656.46nm(122132)1R_H = \frac{1}{\lambda_1} \left( \frac{1}{n_f^2} - \frac{1}{n_i^2} \right)^{-1} = \frac{1}{656.46 \, \text{nm}} \left( \frac{1}{2^2} - \frac{1}{3^2} \right)^{-1} RH=1656.46nm(1419)1=1656.46nm(9436)1=1656.46nm(536)1R_H = \frac{1}{656.46 \, \text{nm}} \left( \frac{1}{4} - \frac{1}{9} \right)^{-1} = \frac{1}{656.46 \, \text{nm}} \left( \frac{9-4}{36} \right)^{-1} = \frac{1}{656.46 \, \text{nm}} \left( \frac{5}{36} \right)^{-1} RH=365×656.46nm1=7.2656.46nm10.0109678nm1R_H = \frac{36}{5 \times 656.46} \, \text{nm}^{-1} = \frac{7.2}{656.46} \, \text{nm}^{-1} \approx 0.0109678 \, \text{nm}^{-1}

Now, we calculate the wavelength for the next line, corresponding to the transition from ni=7n_i=7 to nf=2n_f=2: 1λnext=RH(1nf21ni2)=RH(122172)\frac{1}{\lambda_{\text{next}}} = R_H \left( \frac{1}{n_f^2} - \frac{1}{n_i^2} \right) = R_H \left( \frac{1}{2^2} - \frac{1}{7^2} \right) 1λnext=RH(14149)=RH(494196)=RH(45196)\frac{1}{\lambda_{\text{next}}} = R_H \left( \frac{1}{4} - \frac{1}{49} \right) = R_H \left( \frac{49-4}{196} \right) = R_H \left( \frac{45}{196} \right) Substitute the value of RHR_H: 1λnext=(0.0109678nm1)×(45196)0.0109678×0.2295918nm10.0025177nm1\frac{1}{\lambda_{\text{next}}} = (0.0109678 \, \text{nm}^{-1}) \times \left( \frac{45}{196} \right) \approx 0.0109678 \times 0.2295918 \, \text{nm}^{-1} \approx 0.0025177 \, \text{nm}^{-1} λnext=10.0025177nm1397.17nm\lambda_{\text{next}} = \frac{1}{0.0025177 \, \text{nm}^{-1}} \approx 397.17 \, \text{nm} The calculated wavelength is approximately 397.17 nm. Comparing this with the given options, 397.2 nm is the closest value.

The series limit for the Balmer series is when nin_i \to \infty, giving λlimit=4RH40.0109678364.7nm\lambda_{\text{limit}} = \frac{4}{R_H} \approx \frac{4}{0.0109678} \approx 364.7 \, \text{nm}. Options 356 nm and 328 nm are below this limit and thus are not possible for the Balmer series.