Solveeit Logo

Question

Question: Consider the reaction $A + 2B \rightleftharpoons 2C$ (all are gases). 2 moles of A, 3 moles of B and...

Consider the reaction A+2B2CA + 2B \rightleftharpoons 2C (all are gases). 2 moles of A, 3 moles of B and 2 moles of C were placed in sealed 2 L container. The reaction proceeds at constant temperature and reaches equilibrium. The equilibrium concentration of C is found to be 0.5 mol L1L^{-1}. The KcK_c of the reaction is

A

0.025

B

0.075

C

0.05

D

0.15

Answer

0.05

Explanation

Solution

The problem involves calculating the equilibrium constant (KcK_c) for a given reaction using initial concentrations and one equilibrium concentration.

1. Calculate Initial Concentrations: The reaction is A(g)+2B(g)2C(g)A(g) + 2B(g) \rightleftharpoons 2C(g). Initial moles: A = 2 mol, B = 3 mol, C = 2 mol. Volume of container = 2 L.

Initial concentration of A, [A]0=2 mol2 L=1 mol/L[A]_0 = \frac{2 \text{ mol}}{2 \text{ L}} = 1 \text{ mol/L} Initial concentration of B, [B]0=3 mol2 L=1.5 mol/L[B]_0 = \frac{3 \text{ mol}}{2 \text{ L}} = 1.5 \text{ mol/L} Initial concentration of C, [C]0=2 mol2 L=1 mol/L[C]_0 = \frac{2 \text{ mol}}{2 \text{ L}} = 1 \text{ mol/L}

2. Determine the Direction of the Reaction: The equilibrium concentration of C is given as [C]eq=0.5 mol/L[C]_{eq} = 0.5 \text{ mol/L}. Comparing initial and equilibrium concentrations of C: [C]0=1 mol/L[C]_0 = 1 \text{ mol/L} [C]eq=0.5 mol/L[C]_{eq} = 0.5 \text{ mol/L} Since [C]eq<[C]0[C]_{eq} < [C]_0, the concentration of C has decreased. This indicates that the reaction proceeded in the reverse direction (from products to reactants) to reach equilibrium.

3. Set up ICE (Initial, Change, Equilibrium) Table: Let 'x' be the change in concentration of A that occurs when the reaction proceeds in the reverse direction.

SpeciesInitial (I) (mol/L)Change (C) (mol/L)Equilibrium (E) (mol/L)
A1+x1 + x
B1.5+2x1.5 + 2x
C1-2x1 - 2x

4. Calculate the value of 'x': We are given the equilibrium concentration of C: [C]eq=0.5 mol/L[C]_{eq} = 0.5 \text{ mol/L}. From the ICE table, [C]eq=12x[C]_{eq} = 1 - 2x. So, 12x=0.51 - 2x = 0.5 2x=10.52x = 1 - 0.5 2x=0.52x = 0.5 x=0.52=0.25 mol/Lx = \frac{0.5}{2} = 0.25 \text{ mol/L}

5. Calculate Equilibrium Concentrations of all Species: Now substitute the value of x back into the equilibrium expressions: [A]eq=1+x=1+0.25=1.25 mol/L[A]_{eq} = 1 + x = 1 + 0.25 = 1.25 \text{ mol/L} [B]eq=1.5+2x=1.5+2(0.25)=1.5+0.5=2.0 mol/L[B]_{eq} = 1.5 + 2x = 1.5 + 2(0.25) = 1.5 + 0.5 = 2.0 \text{ mol/L} [C]eq=0.5 mol/L[C]_{eq} = 0.5 \text{ mol/L} (given)

6. Calculate the Equilibrium Constant (KcK_c): The expression for KcK_c for the reaction A(g)+2B(g)2C(g)A(g) + 2B(g) \rightleftharpoons 2C(g) is: Kc=[C]eq2[A]eq[B]eq2K_c = \frac{[C]_{eq}^2}{[A]_{eq}[B]_{eq}^2}

Substitute the equilibrium concentrations: Kc=(0.5)2(1.25)(2.0)2K_c = \frac{(0.5)^2}{(1.25)(2.0)^2} Kc=0.25(1.25)(4.0)K_c = \frac{0.25}{(1.25)(4.0)} Kc=0.255.0K_c = \frac{0.25}{5.0} Kc=0.05K_c = 0.05