Solveeit Logo

Question

Question: An electric dipole is placed at distance x from an infinitely long rod of linear charge density $\la...

An electric dipole is placed at distance x from an infinitely long rod of linear charge density λ\lambda. What is net force acting on dipole?

A

λaq4πϵ0X2\frac{\lambda aq}{4\pi\epsilon_0 X^2}

B

λaqπϵ0x2\frac{\lambda aq}{\pi\epsilon_0 x^2}

C

λaq2πϵ0x2\frac{\lambda aq}{2\pi\epsilon_0 x^2}

D

Zero

Answer

λaqπϵ0x2\frac{\lambda aq}{\pi\epsilon_0 x^2}

Explanation

Solution

The electric field at a distance rr from an infinitely long rod with linear charge density λ\lambda is E(r)=λ2πϵ0rE(r) = \frac{\lambda}{2\pi\epsilon_0 r}. For a dipole with charges q-q and +q+q separated by 2a2a, at distances xax-a and x+ax+a from the rod, the net force is: Fnet=(q)E(xa)+(+q)E(x+a)F_{net} = (-q)E(x-a) + (+q)E(x+a) Fnet=qλ2πϵ0(xa)+qλ2πϵ0(x+a)F_{net} = -q \frac{\lambda}{2\pi\epsilon_0 (x-a)} + q \frac{\lambda}{2\pi\epsilon_0 (x+a)} Fnet=λq2πϵ0(1x+a1xa)F_{net} = \frac{\lambda q}{2\pi\epsilon_0} \left( \frac{1}{x+a} - \frac{1}{x-a} \right) Fnet=λq2πϵ0((xa)(x+a)(x+a)(xa))=λq2πϵ0(2ax2a2)F_{net} = \frac{\lambda q}{2\pi\epsilon_0} \left( \frac{(x-a) - (x+a)}{(x+a)(x-a)} \right) = \frac{\lambda q}{2\pi\epsilon_0} \left( \frac{-2a}{x^2 - a^2} \right) For axa \ll x, Fnet2aλq2πϵ0x2=aλqπϵ0x2F_{net} \approx -\frac{2a\lambda q}{2\pi\epsilon_0 x^2} = -\frac{a\lambda q}{\pi\epsilon_0 x^2}. The magnitude is aλqπϵ0x2\frac{a\lambda q}{\pi\epsilon_0 x^2}.