Solveeit Logo

Question

Question: An electric field $\overrightarrow{E} = 2x\hat{i} + 3\hat{j} – 4\hat{k}$ exist in a region. A cube o...

An electric field E=2xi^+3j^4k^\overrightarrow{E} = 2x\hat{i} + 3\hat{j} – 4\hat{k} exist in a region. A cube of side 2m2m is imagined in the region as shown. Then flux through the right face, top face and front face are respectively in Vm

A

16, 12, -16

B

9, 12, -16

C

16, 8, -16

D

16, 8, 0

Answer

16, 12, -16

Explanation

Solution

Flux through the right face (at x=2x=2): E(x=2)=4i^+3j^4k^\overrightarrow{E}(x=2) = 4\hat{i} + 3\hat{j} - 4\hat{k}. Area vector Aright=(2×2)i^=4i^\overrightarrow{A}_{right} = (2 \times 2)\hat{i} = 4\hat{i}. Flux Φright=EAright=(4i^+3j^4k^)(4i^)=16 Vm\Phi_{right} = \overrightarrow{E} \cdot \overrightarrow{A}_{right} = (4\hat{i} + 3\hat{j} - 4\hat{k}) \cdot (4\hat{i}) = 16 \text{ Vm}.

Flux through the top face (at y=2y=2): The electric field component normal to this face is Ey=3E_y = 3. Area vector Atop=(2×2)j^=4j^\overrightarrow{A}_{top} = (2 \times 2)\hat{j} = 4\hat{j}. Flux Φtop=Ey×Area=3×(2×2)=12 Vm\Phi_{top} = E_y \times \text{Area} = 3 \times (2 \times 2) = 12 \text{ Vm}.

Flux through the front face (at z=2z=2): The electric field component normal to this face is Ez=4E_z = -4. Area vector Afront=(2×2)k^=4k^\overrightarrow{A}_{front} = (2 \times 2)\hat{k} = 4\hat{k}. Flux Φfront=Ez×Area=4×(2×2)=16 Vm\Phi_{front} = E_z \times \text{Area} = -4 \times (2 \times 2) = -16 \text{ Vm}.