Solveeit Logo

Question

Question: If force $\overrightarrow{F} = 3\hat{i} + 4\hat{j} - 2\hat{k}$ acts on a particle having position ve...

If force F=3i^+4j^2k^\overrightarrow{F} = 3\hat{i} + 4\hat{j} - 2\hat{k} acts on a particle having position vector 2i^+j^+2k^2\hat{i} + \hat{j} + 2\hat{k} then, the torque about the origin will be:

A

3i^+4j^2k^3\hat{i} + 4\hat{j} - 2\hat{k}

B

10i^+10j^+5k^-10\hat{i} + 10\hat{j} + 5\hat{k}

C

10i^+5j^10k^10\hat{i} + 5\hat{j} - 10\hat{k}

D

10i^+j^5k^10\hat{i} + \hat{j} - 5\hat{k}

Answer

10i^+10j^+5k^-10\hat{i} + 10\hat{j} + 5\hat{k}

Explanation

Solution

To find the torque about the origin, we use the formula for torque τ=r×F\overrightarrow{\tau} = \overrightarrow{r} \times \overrightarrow{F}, where r\overrightarrow{r} is the position vector and F\overrightarrow{F} is the force vector.

Given:

Position vector r=2i^+j^+2k^\overrightarrow{r} = 2\hat{i} + \hat{j} + 2\hat{k}

Force vector F=3i^+4j^2k^\overrightarrow{F} = 3\hat{i} + 4\hat{j} - 2\hat{k}

We calculate the cross product r×F\overrightarrow{r} \times \overrightarrow{F} using the determinant method:

τ=i^j^k^212342\overrightarrow{\tau} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & 2 \\ 3 & 4 & -2 \end{vmatrix}

Expand the determinant:

τ=i^((1)(2)(2)(4))j^((2)(2)(2)(3))+k^((2)(4)(1)(3))\overrightarrow{\tau} = \hat{i} \left( (1)(-2) - (2)(4) \right) - \hat{j} \left( (2)(-2) - (2)(3) \right) + \hat{k} \left( (2)(4) - (1)(3) \right) τ=i^(28)j^(46)+k^(83)\overrightarrow{\tau} = \hat{i} \left( -2 - 8 \right) - \hat{j} \left( -4 - 6 \right) + \hat{k} \left( 8 - 3 \right) τ=i^(10)j^(10)+k^(5)\overrightarrow{\tau} = \hat{i} \left( -10 \right) - \hat{j} \left( -10 \right) + \hat{k} \left( 5 \right) τ=10i^+10j^+5k^\overrightarrow{\tau} = -10\hat{i} + 10\hat{j} + 5\hat{k}