Solveeit Logo

Question

Question: $y = sin^2(\frac{15\pi}{8}-4x) - sin^2(\frac{17\pi}{8}-4x)$. Find range of $y$. ...

y=sin2(15π84x)sin2(17π84x)y = sin^2(\frac{15\pi}{8}-4x) - sin^2(\frac{17\pi}{8}-4x). Find range of yy.

Answer

[12,12][-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}]

Explanation

Solution

Let the given function be y=sin2(15π84x)sin2(17π84x)y = \sin^2(\frac{15\pi}{8}-4x) - \sin^2(\frac{17\pi}{8}-4x).

We use the trigonometric identity sin2Asin2B=sin(A+B)sin(AB)\sin^2 A - \sin^2 B = \sin(A+B)\sin(A-B). Let A=15π84xA = \frac{15\pi}{8}-4x and B=17π84xB = \frac{17\pi}{8}-4x.

Calculate A+BA+B: A+B=(15π84x)+(17π84x)=15π+17π88x=32π88x=4π8xA+B = (\frac{15\pi}{8}-4x) + (\frac{17\pi}{8}-4x) = \frac{15\pi+17\pi}{8} - 8x = \frac{32\pi}{8} - 8x = 4\pi - 8x.

Calculate ABA-B: AB=(15π84x)(17π84x)=15π84x17π8+4x=15π17π8=2π8=π4A-B = (\frac{15\pi}{8}-4x) - (\frac{17\pi}{8}-4x) = \frac{15\pi}{8} - 4x - \frac{17\pi}{8} + 4x = \frac{15\pi-17\pi}{8} = \frac{-2\pi}{8} = -\frac{\pi}{4}.

Substitute these into the identity: y=sin(4π8x)sin(π4)y = \sin(4\pi - 8x)\sin(-\frac{\pi}{4}).

Simplify the sine terms: sin(4π8x)=sin((8x4π))=sin(8x4π)\sin(4\pi - 8x) = \sin(-(8x - 4\pi)) = -\sin(8x - 4\pi). Since sin(θ2nπ)=sin(θ)\sin(\theta - 2n\pi) = \sin(\theta) for any integer nn, sin(8x4π)=sin(8x2×2π)=sin(8x)\sin(8x - 4\pi) = \sin(8x - 2 \times 2\pi) = \sin(8x). So, sin(4π8x)=sin(8x)\sin(4\pi - 8x) = -\sin(8x).

sin(π4)=sin(π4)=12\sin(-\frac{\pi}{4}) = -\sin(\frac{\pi}{4}) = -\frac{1}{\sqrt{2}}.

Substitute the simplified terms back into the expression for yy: y=(sin(8x))×(12)=12sin(8x)y = (-\sin(8x)) \times (-\frac{1}{\sqrt{2}}) = \frac{1}{\sqrt{2}}\sin(8x).

To find the range of yy, we consider the range of sin(8x)\sin(8x). For any real number xx, 8x8x can take any real value. The range of the sine function for real input is [1,1][-1, 1]. So, 1sin(8x)1-1 \le \sin(8x) \le 1.

Multiply the inequality by 12\frac{1}{\sqrt{2}}: 1212sin(8x)12-\frac{1}{\sqrt{2}} \le \frac{1}{\sqrt{2}}\sin(8x) \le \frac{1}{\sqrt{2}}.

Thus, the range of yy is [12,12][-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}]. This can also be written as [22,22][-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}].