Question
Question: $y = sin^2(\frac{15\pi}{8}-4x) - sin^2(\frac{17\pi}{8}-4x)$. Find range of $y$. ...
y=sin2(815π−4x)−sin2(817π−4x). Find range of y.

[−21,21]
Solution
Let the given function be y=sin2(815π−4x)−sin2(817π−4x).
We use the trigonometric identity sin2A−sin2B=sin(A+B)sin(A−B). Let A=815π−4x and B=817π−4x.
Calculate A+B: A+B=(815π−4x)+(817π−4x)=815π+17π−8x=832π−8x=4π−8x.
Calculate A−B: A−B=(815π−4x)−(817π−4x)=815π−4x−817π+4x=815π−17π=8−2π=−4π.
Substitute these into the identity: y=sin(4π−8x)sin(−4π).
Simplify the sine terms: sin(4π−8x)=sin(−(8x−4π))=−sin(8x−4π). Since sin(θ−2nπ)=sin(θ) for any integer n, sin(8x−4π)=sin(8x−2×2π)=sin(8x). So, sin(4π−8x)=−sin(8x).
sin(−4π)=−sin(4π)=−21.
Substitute the simplified terms back into the expression for y: y=(−sin(8x))×(−21)=21sin(8x).
To find the range of y, we consider the range of sin(8x). For any real number x, 8x can take any real value. The range of the sine function for real input is [−1,1]. So, −1≤sin(8x)≤1.
Multiply the inequality by 21: −21≤21sin(8x)≤21.
Thus, the range of y is [−21,21]. This can also be written as [−22,22].