Solveeit Logo

Question

Question: (nc0/x)-(nc1/(x+1))+.....+(-1)^(n) ncn/(x+n)= n!/((x)(x+1)...(x+n)). If n belongs to N, prove that l...

(nc0/x)-(nc1/(x+1))+.....+(-1)^(n) ncn/(x+n)= n!/((x)(x+1)...(x+n)). If n belongs to N, prove that lhs=rhs

Answer

The identity k=0n(1)k(nk)1x+k=n!(x)(x+1)...(x+n)\sum_{k=0}^{n} (-1)^k \binom{n}{k} \frac{1}{x+k} = \frac{n!}{(x)(x+1)...(x+n)} is proven to be true for nNn \in \mathbb{N}.

Explanation

Solution

Use the integral representation 1a=01ta1dt\frac{1}{a} = \int_0^1 t^{a-1} dt for each term in the LHS. This transforms the sum into an integral of tx1(1t)nt^{x-1}(1-t)^n, which is the Beta function B(x,n+1)B(x, n+1). Using the relation B(a,b)=Γ(a)Γ(b)Γ(a+b)B(a, b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)} and Gamma function properties Γ(n+1)=n!\Gamma(n+1)=n! and Γ(z+1)=zΓ(z)\Gamma(z+1)=z\Gamma(z), the expression simplifies to n!x(x+1)...(x+n)\frac{n!}{x(x+1)...(x+n)}, proving the identity.